

Question Booklet No.

Hall Ticket Number:

Time: 2 Hr. 30 Min.

Signature of the Candidate

Total Marks: 150

Note: Before answering the questions, read carefully the instructions given on the OMR sheet.

సూచన : ప్రశ్నలకు జవాబులు ద్రాయుటకు ముందు, OMR జవాబు ప్రతములో ఇవ్వబడిన సూచనలు జాగ్రత్తగా చదవండి.

SECTION - I : MATHEMATICS (గణిత శాస్త్రము)

1
$$\log_x 2 + \log_x 2^2 + \log_x 2^3 + \dots + \log_x 2^n = \frac{n(n+1)}{2}$$
 then $x = 1$

$$\log_x 2 + \log_x 2^2 + \log_x 2^3 + \dots + \log_x 2^n = \frac{n(n+1)}{2}$$
 అయిన $x =$

(1) n

- (4) 2

2
$$A = \{P, O, L, Y, T, E, C, H, N, I, Q\}, B = \{P, O, L, Y, C, E, T, 2020\}, B - A = \{P, O, L, Y, T, E, C, H, N, I, Q\}, B = \{P, O, L, Y, C, E, T, 2020\}, B - A = \{P, O, L, Y, T, E, C, H, N, I, Q\}, B = \{P, O, L, Y, C, E, T, 2020\}, B - A$$

- (1) $\{20\}$
- $(2) \{2020\} \qquad (3) \{40\}$
- (4) None (ఏదీ కాదు)

3 Product of the polynomials
$$(x^3+8)$$
, $(x-8)$ is denoted by

$$p(x) = ax^4 + bx^3 + cx^2 + dx + e$$
 then $p(8) =$

$$(x^3+8),(x-8)$$
 అను బహుపదుల లబ్ధము $p(x)=ax^4+bx^3+cx^2+dx+e$ అయిన $p(8)=$

- (1) 0
- (2) 1
- (3) 2

- If α , β are the roots of $x^2 1 = 0$, then $\alpha + \beta =$ 4 α, β లు $x^2 - 1 = 0$ యొక్క మూలాలైన, $\alpha + \beta =$ (1) 0(2) 1(3) - 15
- In the formula $\log_a xy = \log_a x + \log_a y$, which of the following is true? $\log_a xy = \log_a x + \log_a y$ అయిన, ఈ క్రింది వాటిలో ఏది సత్యము.
 - (1) x > 0, y > 0, a = 1

- (2) x < 0, y < 0, a = 1
- (3) a > 0, y > 0, x = 1
- (4) $x > 0, y > 0, a \ne 1$

- 6 If 7 divides a^2 then
 - (1) 7 divides 'a' (2) 7 divides \sqrt{a} (3) a divides 7
- (4) None

 a^2 ను 7 భాగించినచో

- (1) 'a' మ 7 భాగిస్తుంది (2) \sqrt{a} మ 7 భాగిస్తుంది(3) 7 మ a భాగిస్తుంది (4) ఏదీ కాదు

- $\log_x b \log_x a = \log_x c \log_x b \quad \therefore ac =$
 - $(1) a^2$
- $(2) b^2$
- $(3) c^2$
- (4) None (ఏదీ కాదు)
- If $A = \{a\}, B = \{a,b\}, C = \{a,b,c\}$, then $A \cap B \cap C = \{a,b,c\}$ $A = \{a\}, B = \{a,b\}, C = \{a,b,c\}$ అయిన $A \cap B \cap C =$

- (1) $\{a\}$ (2) $\{b\}$ (3) $\{c\}$ (4) None (ఏదీ కాదు)
- 5 =
 - $(1) 7^{\log_{12} 5}$
- (2) $7^{\log_5 7}$
- $(3) 7^{\log_7 5}$
- (4) None (ඛ්ය පත්ර)
- If the roots of $2x^2 + kx + 3 = 0$ are real and equal then k =10 $2x^2+kx+3=0$ యొక్క మూలాలు వాస్తవాలు మరియి సమానాలు అయినచో k యొక్క విలువ
 - (1) $\pm 6\sqrt{2}$ (2) ± 4 (3) $\pm 2\sqrt{6}$ (4) ± 5

11
$$8x^2 - 6x - 9 = \dots$$

$$(1) (2x-3)(x-3)$$

$$(2) (2x-3)(x+1)$$

(1)
$$(2x-3)(x-3)$$
 (2) $(2x-3)(x+1)$ (3) $(2x+1)(x-1)$ (4) $(2x-3)(4x+3)$

$$(4) (2x-3)(4x+3)$$

12
$$1, \frac{-1}{2}, \frac{1}{4}, \dots$$
 are in G.P., then find 8th term.

 $1, \frac{-1}{2}, \frac{1}{4}, \dots$ గుణ (శేథి లో ఉంటే, 8 ప పదము :

$$(1) \ \frac{1}{128} \qquad (2) \ \frac{1}{64}$$

(2)
$$\frac{1}{64}$$

$$(3) \frac{-1}{128}$$

$$(4) \frac{-1}{64}$$

4, 7, 10, A.P. లో ఉన్నచో, 15 పదాల మొత్తం

$$(2)$$
 475

13, 8, 3, -2, A.P. లో 10 వ పదం

$$(1) - 32$$
 $(2) - 23$

$$(2) - 23$$

$$(3)$$
 30 (4) -30

For the equation
$$2019x + 2020y = 4040$$
 when $x = 0$ the value of $y = 2019x + 2020y = 4040$ అను సమీకరణమునకు $x = 0$ అయిన y విలువ =

- (1) 2020
- (2) 2019 (3) 4 (4) 2

Solution of the equations
$$7x+5y=12$$
, $5x-7y=-2$ is not equal to $7x+5y=12$, $5x-7y=-2$ సమీకరణాల సాధన ఈ క్రింది వానిలో దేనికి సమానము కాదు

- (1) $\frac{-22}{22}, \frac{14}{14}$ (2) $\frac{33}{33}, \frac{44}{44}$ (3) $\frac{77}{77}, \frac{13}{13}$ (4) $\frac{16}{16}, \frac{15}{15}$

Which term of the G.P.: $\sqrt{3}$, 3, 3 $\sqrt{3}$,..... is 729 ? 17 $\sqrt{3}, 3, 3\sqrt{3}, \ldots$ గుణ (శేడ్డిలో 729 ఎన్నవ పదం? (1) 10(2) 12 (3) 14 (4) 16 The centroid of the triangle whose vertices are (3, -5), (-7, 4), (10, -2) is 18 (3,-5),(-7,4),(10,-2) లు శీర్ధాలుగా గల త్రిభుజం యొక్క గురుత్వకేంద్రం (1) (1,1) (2) (1,-2) (3) (-2,1) (4) (2,-1)The point (2,-3) divides the line segment joining the points (-1,3),(4,-7) in the 19 ratio..... (-1,3),(4,-7) బిందువులతో ఏర్పడు రేఖా ఖండాన్ని (2,-3) బిందువు విభజించు నిష్పత్తి (2) 2 : 3(3) 8:1 (4) 1 : 4(1) 3 : 2If (5,2) is the solution of 2x+5y=20, ax-by=0, then (a,b)=2x + 5y = 20, ax - by = 0 ల సాధన (5,2) అయిన (a,b) =(4) (-5,2)(1) (2,5) (2) (5,2) (3) (-2,5)If the system of equations x-y=1, ax+y=2 has unique solution then 21 జత సమీకరణాలు x-y=1, ax+y=2 లకు ఏకైక సాధన ఉంటే (1) a=1 (2) a=-1 (3) $a \neq 1$ $(4) \ a \neq -1$

Roots of $5x^2 - 8x = 4$ are : 22

 $5x^2 - 8x = 4$ యొక్క మూలాలు :

(1) $2, \frac{-2}{5}$ (2) $1, \frac{8}{5}$

 $(3) 2, \frac{1}{5}$

(4) 2, 7

- Product of the roots of $\sqrt{3} x^2 2x \sqrt{3} = 0$ is $\sqrt{3} x^2 - 2x - \sqrt{3} = 0$ యొక్క మూలాల లభం :
 - (1) 1

- (2) 1
- (3) $\frac{2}{\sqrt{3}}$ (4) $-\frac{2}{\sqrt{3}}$
- 24 $\frac{x}{2019} + \frac{y}{2020} = 2, \frac{2x}{2019} \frac{y}{2020} = 1, : (x,y) =$
 - (1) (2019, 2020)

- (2) (2020, 2019) (3) (2019, 2019) (4) (2020, 2020)
- $x + y = \sqrt{3}, x y = 0$ then x = 025 $x + y = \sqrt{3}, x - y = 0$ అయిన x =
 - (1) $\sqrt{3}$
- $(2) -\sqrt{3}$
- (3) $\frac{\sqrt{3}}{2}$
- $(4) \frac{-\sqrt{3}}{2}$
- If the slope of the line through (2, -7) and (x, 5) is 3 then $x = \dots$ 26 (2, -7), (x, 5) ల గుండా పోవు రేఖ వాలు 3, అయిన x యొక్క విలువ
 - (1) 4

(2) 5

- (3) 6
- (4) 7
- If (8,1), (k,-4), (2,-5) are collinear, then $k = \dots$ 27
 - (8,1),(k,-4),(2,-5) లు సరేఖీయాలైన, k యొక్క విలువ.....
 - (1) 4
- (2) 3

- (3) 2
- (4) 1
- In $\triangle ABC$; $BC^2 + AB^2 = AC^2$ then _____ is the right angle. 28

 ΔABC లో $BC^2 + AB^2 = AC^2$ అయిన _____ వద్ద లంబకోణం ఉండును.

(1) B

(2) A

(3) C

(4) Can't say (බිහිටුම්කා)

29
$$\triangle ABC \sim \triangle PQR$$
; $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} = k$ then k value

$$\Delta ABC \sim \Delta PQR$$
; $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} = k$ అయిన k ఏలువ

- (1) k = 1
- (2) k > 1
- (3) k < 0
- (4) k = 0

A line which intersects the given circle at two distinct points is called 30

- (2) secant
- (3) radius

వృత్తాన్ని రెండు పేరుపేరు బిందుపుల వద్ద ఖండించు సరళరేఖను ఏమంటారు

- (1) స్పర్శ రేఖ
- (3) వ్యాసార్ధము
- (4) వృత్తము

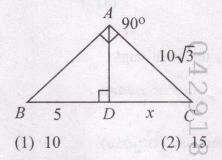
Angle in a major segment is

- (1) an obtuse angle
- (3) right angle

అధిక వృత్త ఖండంలోని కోణము

- (1) అధిక కోణము
- (3) లంబకోణము

- (2) an acute angle
- (4) None


(2) అల్పకోణము

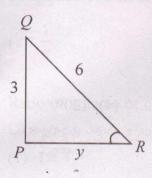
The ratio of the corresponding sides of two similar triangles is 5:3 then the ratio of 32 their areas

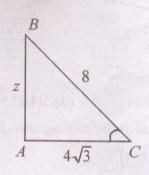
రెండు సరూప త్రిభుజాల అనురూప భుజాల నిష్పత్తి 5 : 3 అయిన వైశాల్యాల నిష్పత్తి

- (2) 3; 5
- (4) 25:9

33 From the figure $x = \underline{\hspace{1cm}}$ పటం నుండి x =

- (3) 12
- (4) 25


34 $\triangle ABC \sim \triangle xyz; \angle C = 60^{\circ}; \angle B = 75^{\circ} \text{ then } \angle Z = \underline{\hspace{1cm}}$


 \triangle $ABC \sim \triangle xyz$; $\angle C = 60^\circ$; $\angle B = 75^\circ$ అయిన $\angle Z =$

- $(1) 90^{\circ}$
- (2) 75°
- $(3) 45^{\circ}$
- $(4) 60^{\circ}$

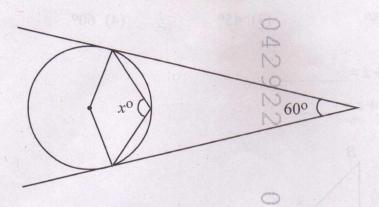
35 $\triangle ABC \sim \triangle PQR$ then y+z=

 $\Delta ABC \sim \Delta PQR$ అయిన y+z=

- $(1) \ 4 + \sqrt{3}$
- (2) $3+4\sqrt{3}$
 - $(3) 4+3\sqrt{3}$
- $(4) 4 \sqrt{3}$
- 36 To find out the slant height of a cone, we use _____ theorem.
 - (1) Thales
- (2) S.A.S.
- (3) Pythagorus
- (4) S.S.S.

శంఖువు ఏటావాలు ఎత్తు కనుగోనుటలో _____ సిద్ధాంతము ఉపయోగిస్తాము.

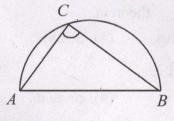
- (1) థేల్స్
- (2) భు.కో.భు.
- (3) పైథాగరస్
- (4) భూ.భు.భు.
- 37 The radius of the sphere is increased by 100%, the volume of the resulting sphere is increased by


ఒక గోళము యొక్క వ్యాసార్థము 100% పెంచిన ఏర్పడిన గోళము యొక్క ఘన పరిమాణము ఎంత పెరుగును.

- (1) 200%
- (2) 700%
- (3) 500%
- (4) 900%

- 38 1 radian =
 - (1) 56°18'
- (2) 57°16′
- (3) 56°15'
- (4) 45°40′

In the figure x =39


పటము నుండి x =

- $(1) 60^{\circ}$
- $(2) 100^{\circ}$
- (3) 1100
- (4) 120°

In the figure, ZACB..... 40

పటం నుండి $\angle ACB$ విలువ

- $(1) 60^{\circ}$
- $(2) 90^{\circ}$
- $(3) 30^{\circ}$
- (4) 110°
- 41 Which of the following formula is associated to cylinder? **්** ලිටේ කැළුවේ කුත්තිදී තිරහට සිට කැළකා
 - (1) $\frac{1}{3}\pi r^2 h$ (2) $\pi r^2 h$ (3) $\frac{2}{3}\pi r^3$
- (4) $\frac{4}{3}\pi r^3$

If $a\cos\theta + b\sin\theta = p$, $a\sin\theta - b\cos\theta = q$ then $a\cos\theta + b\sin\theta = p$, $a\sin\theta - b\cos\theta = q$ అయిన

$$(1) a^2 + b^2 = p^2 + q^2$$

(2)
$$a^2 + b^2 = p^2 - q^2$$

(3)
$$a^2 - b^2 = p^2 + q^2$$

$$(4) \quad a^2 - b^2 = p^2 - q^2$$

The circumference of a circle is 100 cm, then the side of a square inscribed in the 43 circle is

ఒక వృత్త పరిది 100ెనెం.మీ. అయిన ఆ వృత్తంలో అంతర్హిఖించ బడిన చతుర్మస భుజం

$$(1) \ \frac{1}{\pi}$$

$$(2) \quad \frac{5\sqrt{2}}{\pi}$$

(3)
$$\frac{50\sqrt{2}}{\pi}$$

$$(4) \frac{50}{\pi}$$

Ratio of volume of cylinder and cone whose radii are equal and having same heights. 44 ఒకే వ్యాసార్ధం, ఎత్తులు కల్తిన స్టూపము, శంఖువుల ఘన పరిమాణముల నిష్పత్రి.

45 Angle between the tangent and radius drawn through the point of contact is వృత్త స్పర్న బిందువు వద్ద వ్యాసార్ధానికి, స్పర్శరేఖకు మధ్యగల కోణము

$$(1) 30^{\circ}$$

$$(2) 45^{\circ}$$

$$(3) 60^{\circ}$$

$$(4) 90^{\circ}$$

The mean of 17, 4, 8, 6 and 15 is m, the median of 8, 14, 10, 5, 7, 5, 20, 19 and n 46 is (m-1). Then the values of m and n are

(1)
$$m = 9$$
, $n = 10$

(2)
$$m = 10, n = 9$$

(3)
$$m = 5, n = 9$$

(2) m = 10, n = 9 (3) m = 5, n = 9 (4) None of these

 $17,\ 4,\ 8,\ 6$ మరియు 15 ల సగటు $m,\ 8,\ 14,\ 10,\ 5,\ 7,\ 5,\ 20,\ 19$ మరియు n ల మధ్యగతం (m-1) මගාන m, n ධ්පාන්පා

(1)
$$m = 9$$
, $n = 10$ (2) $m = 10$, $n = 9$ (3) $m = 5$, $n = 9$

(2)
$$m = 10, n = 9$$

(3)
$$m = 5, n = 9$$

47 Find the mode when median is 125.6 and mean is 128.

మధ్యగతం 125.6 మరియు సగటు 128 అయిన బాహుళకం ఎంత?

48 From the top of the tower 60 mts high the angle of depression of two objects due north and due south of the tower are 60° and 45° then the distance between two objects is 60 మీ. ఎత్తుగల ఒక టవర్ పై భాగము నుండి నిమ్నకోణంతో ఉత్తర, దక్షిణ దిక్కులలో ఉన్న రెండు వస్తువులను $60^{\rm o}$ మరియు $45^{\rm o}$ లతో చూచిన, ఆ వస్తువుల మధ్య దూరం ఎంత ?

(1)
$$60\sqrt{3} \ m$$

(2)
$$(60+20\sqrt{3})m$$
 (3) $60(\sqrt{3}-1)m$ (4) $60(\sqrt{3}+1)m$

(3)
$$60(\sqrt{3}-1)m$$

(4)
$$60(\sqrt{3}+1)m$$

49 What is the probability of getting an even number in a single throw of a die? ఒక పాచికను దొర్లించినప్పుడు సరిసంఖ్య లభించుటకు గల సంభావ్యత :

$$(1) \frac{1}{2}$$

(2)
$$\frac{1}{3}$$
 (3) $\frac{1}{6}$

(3)
$$\frac{1}{6}$$

$$(4) \frac{5}{6}$$

A number chosen from 1 to 100. Find the probability that it is a prime number 50 1 నుండి 100 సంఖ్యలలో ఒక సంఖ్యను యాదృచ్చికంగా ఎంచుకున్న, ఆ సంఖ్య ప్రధాన సంఖ్య అవగలిగే సంభావ్యత

$$(1) \frac{1}{2}$$

(1)
$$\frac{1}{2}$$
 (2) $-\frac{1}{4}$ (3) $\frac{1}{4}$ (4) $-\frac{1}{2}$

(3)
$$\frac{1}{4}$$

$$(4) -\frac{1}{2}$$

The median of the marks scored by 100 students in a 25 marks Unit test is 51 ఈ క్రింది దత్తాంశ మధ్యగతం ఎంత?

<i>Marks</i> (మార్కులు)	0-5	5-10	10-15	15-20	20 – 25
No. of students (విద్యార్ధుల సంఖ్య)	10	18	42	13	7 milem n

52	In hundred num arithmatic mean	bers 20 are fours, 4		es remaining are tens t	hen
	20 నాల్గులు, 40 ఐద	సులు, 30 ఆరులు 10 పదు	ల సగటు ఎంత?	a la son A sia sa	
	(1) 3.5	(2) 5.6	(3) 4.7	(4) 5.8	
53	If a coin is tosse	ed 3 times, then the	probability of getting	at least one head is	
	ఒక నాణాన్ని మూడు నే	ార్లు ఎగురవేసిన కనీసం ఒక	బొమ్మ పొందగల సంభావ్యత		
	(1) $\frac{3}{8}$	(2) $\frac{5}{8}$	$(3) \frac{1}{8} \stackrel{\bigcirc}{S}$	$(4) \frac{7}{8}$	
54	If $A = 45^{\circ}$, $B =$	60° then $\sin A + \cos A$	os B =	08/2019 608/2021 66	
	$A = 45^{\circ}$ మరియు	$B = 60^{\circ}$ అయిన $\sin A$	$1 + \cos B = ?$		
	$(1) \frac{2-\sqrt{2}}{2\sqrt{2}}$	$(2) \frac{2+\sqrt{2}}{2}$	$(3) \frac{2+\sqrt{2}}{\sqrt{2}}$	$(4) \frac{2+\sqrt{2}}{2\sqrt{2}}$	62
55	If A, B, C, D are	angles of a cyclic qu	uadrilateral, then $\sin A$	$+\sin B - \sin C - \sin D =$	=?.
			$\sin A + \sin B - \sin C - s$		
	(1) - 1	(2) 0	(3) 1		
	(1)	. (2) 0	429	(4) 2	
= (TC:	differentialist scene		dakor ing regjam sors	hui
56	different is	lled simultaneously	then the probability tha	t the numbers on them	are
	రెండు పాచికలను ఒకేస	ారి దొర్లించినప్పుడు వాటి త	లాలపై వేర్వేరు సంఖ్యలు లభిం	ഷ సంభావ్యత	
	(1) $\frac{5}{6}$	(2) $\frac{1}{4}$	$(3) \frac{1}{2} \stackrel{\bigcirc}{\square}$	(4) $\frac{9}{13}$	

A bag contains 6 red balls, 12 green balls and 8 black balls. Find the probability that the ball drawn is either a black or a red ball.

ఒక సంచిల్ 6 ఎరుపు బంతులు, 12 ఆకుపచ్చ బంతులు మరియు 8 నలుపు బంతులు ఉన్నాయి. ఆ సంచినుండి యాదృచ్చికంగా ఒక బంతిని తీసిన అది నలుపు లేదా ఎరుపు రంగు బంతి అగు సంభావ్యత కనుగొనండి.

- (1) $\frac{13}{7}$ (2) $\frac{1}{13}$ (3) $\frac{7}{13}$ (4) $\frac{1}{7}$

 $\cos 201^{\circ} \cos 202^{\circ} \cos 203^{\circ} \dots \cos 300^{\circ} =$ 58

 $\cos 201^{\circ} \cos 202^{\circ} \cos 203^{\circ}$ $\cos 300^{\circ}$ విలువ ఎంత ?

- $(1) \frac{\pi}{2}$
- (2) $\frac{3\pi}{2}$ (3) $\frac{\pi}{4}$ (4) 0

If the angle of elevation of the Sun is 60°, then the ratio of a tree with its shadow is

- (1) 1:1
- (2) $1:\sqrt{3}$
- (3) $\sqrt{3}:1$
- (4) None of these

ఒక చెట్టు సూర్యుని చే చేయు ఊర్ద్వకోణం $60^{
m o}$ అయిన ఆ చెట్టు మరియు దాని వీడల పొడవుల నిష్పత్తి :

- (1) 1:1 (2) 1: $\sqrt{3}$ (3) $\sqrt{3}$:1 (4) ఏదీ కాదు

60 If $A = \frac{\pi}{4}$ then $(1 + \tan A) (1 + \tan^2 A) (1 + \tan^3 A) =$

 $A = \frac{\pi}{4}$ මගාම් $(1 + \tan A) \left(1 + \tan^2 A\right) \left(1 + \tan^3 A\right) =$

- (1) 6
- (2) 4
- (3) 8

(4) 2

SECTION – II : PHYSICS (భౌతిక శాస్త్రము)

The minimum distance from a real object to the real image in a concave mirror is 61 equal to పుటాకార దర్భణమును ఉపయోగించునప్పుడు నిజ వస్తువుకు, నిజ మ్రతి బింబానికి గల కనీస్త దూరము దేనికి సమానము $(1) \ 2F$ (2) F(3) 0(4) F/262 The relation between focal length and radius of curvature of a spherical mirror is గోళాకార దర్భణాలలో నాభ్యంతరము, వ్వకతావ్యాసార్ధానికి గల సంబంధము (1) $f = \frac{R}{2}$ (2) f = 2R (3) R = f (4) R = 3f63 The lens that is used to rectify hypermetrophia (1) Concave (2) Convex (3) Cylindrical (4) None దూరదృష్టి ని నివారించుటకు ఉపయోగించు కటకము (2) కుంభాకార (3) స్థూపాకార (1) పుటాకార (4) ఏదీకాదు The relation between the speed of wave (v), wavelength (λ) and frequency (n) is-64 తరంగవేగము (v), తరంగధైర్హ్మము (χ) మరియు పౌన:పున్యము (n) ల మధ్యగల సంబంధము (2) $\lambda = vn$ (3) $\lambda = \frac{n}{v}$ (4) $\lambda = \frac{v}{n}$ (1) $n = v\lambda$ 65 When objects of different distances are seen which of the following remain constant (1) Focal length of the eye lens (2) Object distance from eye lens (3) Image distance from eye lens (4) The radii of curvature of eye lens వేర్వేరు దూరాలలో గల వస్తువులను చూచినప్పుడు, కంటికి సంబంధించి ఈ క్రింది వాటిలో ఏది స్థిరంగా ఉండును. (1) కంటి కటక నాభ్యంతరము (2) కంటి కటకము నుండి వసువు దూరము

SPACE FOR ROUGH WORK / చిత్తు పనికి కేటాయించబడిన స్థలము

(4) ಕಂಟೆ ಕಟಕ ವ್ಯಕ್ತಕ್ ವ್ಯಾನ್ ರಮುಲು

(3) కంటి కటకము నుండి ప్రతిబింబ దూరము

66	The mirror used as "Rearview" mirror	or in vehicles is
	(1) Concave (2) Convex	(3) Plane (4) None of these
	వాహనాలలో 'రియర్ ఫ్యూ' మిర్రర్ గా ఉపయోగించు	ు దర్పణము
	(1) పుటాకార (2) కుంభాకార	(3) సమతల (4) ఏదీకాదు
67	When light passes through the diquid related to	ds the change of frequency of Scattered light is
	(1) Raman effect	(2) Snell's law
	(3) Total internal reflection	(4) None of these
	కాంతి ద్రవాల గుండా ప్రయాణించినప్పుడు, పరిక్ష	క్లేపణము చెందిన కాంతి యొక్క పౌన:పున్యము మారుట అన్నడి
	దీనికి సంబందించినది.	
	(1) రామన్ బ్రజ్తూవము	(2) స్నెల్ నియమము
	(3) సంపూర్ణాంతర పరావర్తనము	(4) වුබ්ඨ පතු
68	If the minimum angle of deviation is 3 index of the material of the Prism.	30° with a Prism of angle 60°. Find the refractive
	$60^{ m o}$ ಕ್ ಇಂ ಕಲಿಗಿನ పట్టకములో కనిష్ఠ విచలన గుణకము ఎంత ?	న కోణం 30° అయిన, పట్టక పదార్ధము యొక్క వక్ష్మీభవన
	(1) $\sqrt{2}$ (2) $\sqrt{3}$ (3)	(3) $\sqrt{\frac{3}{2}}$ (4) $\sqrt{\frac{2}{3}}$
69	The focal length of eye lens changes	between these values.
	(1) 2.27 cm to 2.5 cm	(2) 2.27 cm to 5 cm
	(3) 2.5 cm to 25 cm	(4) 2.5 cm to 50 cm
	కంటి కటకము యొక్క నాభ్యంతరము ఈ క్రింది విల	లువల మధ్య మారును.
	(1) 2.27 సెం.మీ. నుండి 2.5 సెం.మీ.	(2) 2.27 సెం.మీ. నుండి 5 సెం.మీ.

70 What is the lens makers formula? కటక తయారీ దారుని స్పూతము ఏమిటి?

(1)
$$\frac{1}{f} = (\mu + 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

(2)
$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

(3)
$$\frac{1}{f} = (\mu + 1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

(4)
$$\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

What is the position of the image if the object is placed beyond the centre of curvature 71 on the principal axis of convex lens?

(1) at F.

(2) at C

(3) between C and F

(4) at infinity

కుంభాకార కటకము యొక్క ప్రధాన అక్షము పై వ్యకతాకేంద్రమునకు ఆవల వస్తువును ఉంచిన ప్రతిబింబ స్థానము

(1) F නස

(2) C ක්ස්

(3) C మరియు F ల మధ్య

(4) මතරම దూరంలో

When two ends of a conductor are connected to terminals of battery, what happens 72 inside conductor?

- (1) Electrons move randomly
- (2) Electrons come to rest
- (3) Non-uniform electric field creates
- (4) Uniform electric field creates

వాహకము యొక్క రెండు చివరలను బ్యాటరీ టెర్మినల్స్ కి కలిపినప్పుడు, వాహకం లోపల ఏమి జరుగుతుంది.

- (1) ఎలక్ట్రాన్లు క్రమరహిత చలనంలో ఉంటాయి
- (2) ఎలక్ట్రాన్లు నిశ్చల స్థితికి వస్తాయి
- (3) అసమరీతి విద్యుత్ క్రేతము ఏర్పడుతుంది
- (4) సమరీతి విద్యుత్ క్షేత్రము ఏర్పడుతుంది

What is the focal length of a double concave lens kept in air with two spherical 73 surfaces of radii $R_1 = 30$ cm, $R_2 = 60$ cm and refractive index of glass is n = 1.5? వ్వకీభవన గుణకము 1.5 గల ఒక పుటాకార కటకము గాలిలో ఉంచబడినది. కటకము యొక్క వ్వకతావ్యాసార్ధములు $R_1 = 30$ ెనుం.మీ., $R_2 = 60$ ెనుం.మీ. అయిన కటక నాభ్యంతరము ఎంత

- (1) 40 cm
- (2) 40 cm (3) 50 cm
- (4) 50 cm

	(a)	$\frac{v}{u}$	(b) $-\frac{v}{u}$	(c)	$\frac{h_i}{h_0}$	(d)	$\frac{h_o}{h_i}$
	(1)	a and b	(2) b and c		c and d		d and a
	గోళ	ాకార దర్పణాలలో ఆవ	ర్ధనము సూచించునది				
	N	ν	V		h:		h
	(a)	$\frac{\cdot}{u}$	(b) $-\frac{v}{u}$	(c)	$\frac{h_i}{h_o}$	(d)	$\frac{h_o}{h_i}$
	(1)	a మరియు b	(2) b మరియు c	(3)	c మరియు d	(4)	d మరియు a
75	The	e lens which can	form real and virtua	l ima	ages is		
	(1)	Convex		(2)	Concave		
	(3)	Both Convex ar	nd Concave	(4)	None of these		
	්ට්ස් ව	మరియు మీథ్యా ప్రతిబిం	ంబములను ఏర్పరచు కటకమ	U		ē U	
	(1)	కుంభాకార		(2)	పుటాకార		
	(3)	కుంభాకార మరియు శ	ప్రటాకార	(4)	ఏదీ కాదు		
76	Uni	it of power of a	lens				
	(1)	cm	(2) m	(3)	dioptre	(4)	None
	(కటక	సామర్ధ్యం నకు బ్రామాణ	ు ము				
	(1)	సెం.మీ.	(2) ⁵ 5	(3)	డయాప్టర్	(4)	ఏదీ కాదు
77	If a	convex lens is 1	placed in water, its fo	ocal	length is		
	(1)	increases	(2) decreases	(3)	no change	(4)	None of these
	હક ક	కుంభాకార కటకమును	ఏటిలో ఉంచిన దాని నాభ్యంత	తరము			
	(1)	పెరుగుతుంది	(2) తగ్గుతుంది	(3)	<u>మారదు</u>	(4)	ఏదీకాదు
	N						
	O	SPACE FO	OR ROUGH WORK	/ 2	త్తు పనికి కేటాయించబ	తివ ప ్ షణ	లము

Which of the following is the formula for magnification of spherical mirror?

74

78	The power delivered by a battery of entitle battery is	of 20 V is 40 W . Then the current delivered by
	(1) 0.5 ampere (2) 2 ampere	(3) 60 ampere (4) 800 ampere
	20 ఓల్ట్ విద్యుచ్చాలక బలము గల ఒక బ్యాటరీ న వచ్చే విద్యుత్ ప్రవాహము ఏంత?	ండి వెలువడే సామర్ధ్యము 40 వాట్. అయిన బ్యాటరీ నుండి
	(1) 0.5 ఆంపియర్ (2) 2 ఆంపియర్	(3) 60 ఆంపియర్ (4) 800 ఆంపియర్
79	By using Kirchoff loop law find the va	alue of 'x' in given circuit.
	కిర్చాఫ్ లూప్ సూత్రము ఉపయొగించి, ఇచ్చిన వలయ	ములో x విలువ కనుగొనండి.
	. 15 V	as comes of material end has games to the
		N
	$\bigvee i = 3A$	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
	2 ohm x ohm	O THE REAL PROPERTY OF THE PARTY OF THE PART
	(1) 2 ohm (ఓమ్) (2) 3 ohm (ఓమ్)	(3) 5 ohm (ఓమ్) (4) 4 ohm (ఓమ్)
30	The frequency of direct current is	Hz.
	ఏక ముఖ: విద్యుత్ యొక్క పౌన:పున్యము	<u>ా</u> హెర్ట్.
	(1) 0 (2) 50	(3) 60 (4) 100
31	In an AC generator direction of current	t changes because of
	(1) external magnet	
	(3) slip rings	
	AC జనరేటర్ లో విద్యుత్ ప్రవాహ దిశను మార్చడానికి	
	(1) బాహ్య అయస్కాంతము	(2) కార్బన్ బ్రష్ లు
	(3) స్టిప్ రింగులు	(4)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

	ఈ క్రింది ఏ పదార్ధము అధిక విశిష్ట నిరోధము విలువను కలిగి ఉంటుంది.
	(1) రాగి (2) సిలికాన్ (3) గాజు (4) ఇనుము
83	Three conductors having resistance values 2 ohm, 3 ohm and 4 ohm are connected in parallel. Find equivalent resistance.
	(1) 20 ohm (2) 9 ohm (3) $\frac{13}{12}$ ohm (4) $\frac{12}{13}$ ohm
	మూడు వాహకపు నిరోధాల విలువలు 2 ఓమ్, 3 ఓమ్ మరియు 4 ఓమ్ లను సమాంతరముగా కలపిన ఫలిత నిరోధము ఏంత?
	(1) 20.65 (2) 9.65 (3) $\frac{13}{12}.65$ (4) $\frac{12}{13}.65$
84	Which of the following relation is correct regarding potential difference (V) ?
	(1) $V = \frac{Fl}{q}$ (2) $V = \frac{Fq}{l}$ (3) $V = \frac{l}{Fq}$ (4) $V = \frac{q}{Fl}$
85	Two metallic wires 'A' and 'B' are having same cross-sectional areas and same current passes through them. Find ratio of drift velocity of electrons in wire 'A' and 'B'.
	[electron density of wire $A = 8.0 \times 10^{28} m^{-3}$ and
	electron density of wire $B = 9.0 \times 10^{28} m^{-3}$]
	ටිංයා ඒ ත්තු ම් රාතා ' A ' කරිගා ' B ' ව කා:ఖచ్చేద වූ නිපාපාදිතා රාකාරකා කරිගා නෑසී රාංශ (හින් නිපාස්
	విద్యుత్లు సమానము. ' A ' మరియు ' B ' తీగలలోని ఎలక్ట్రాన్ల అపసరవడి నిష్పత్తిని కనుగొనండి.
	$[A']$ తీగలో ఎలక్ట్రాన్ ల సాంద్రత $8.0 imes 10^{28} m^{-3}$ మరియు
	$^{\prime}B^{\prime}$ తీగలో ఎలక్ట్రాన్ ల సాంద్రత $9.0 imes10^{28}m^{-3}$]
	(1) 8/9 (2) 9/8 (3) 16/27 (4) 27/16
	SPACE FOR ROUGH WORK / చిత్తు పనికి కేటాయించబడిన స్థలము

18

Which of the following materials has high value of specific resistance?

(3) Glass

(4) Iron

[P.T.O.

(2) Silicon

82

(1) Copper

POLYCET-2020-B]

Which is not a application of the Faraday's law?

(1) Washing machine

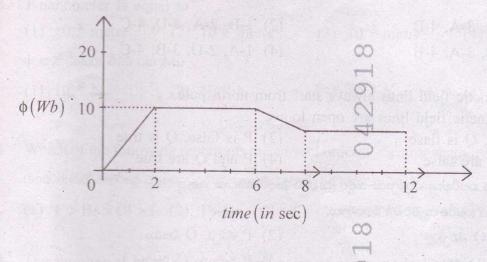
(2) Induction stove

(3) Security check gate

(4) ATM card

ఈ క్రింది వాటిలో ఎ అనువర్తనము ఫారడే నియమానికి చెందినది కాది?

(1) ವಾಭಿಂಗ್ ಮಸ್ಥಿನ


(2) ఇండక్షన్ స్టవ్

(3) సెక్యురిటీ చెక్ ద్వారము

(4) ATM 50 5

87

86

The graph shows relation between induced emf (ϕ) and time (t). During which time period there is no change in induced electromotive force?

- (1) 6 to 12
- (2) 2 to 6
- (3) 0 to 6
- (4) 6 to 8

్రపేరిత విద్యుచ్ఛాలక బలము (ϕ) మరియు కాలము (t) మధ్య సంబంధాన్ని గ్రాఫ్ సూచిస్తుంది. ఏ కాల వ్యవధిలో (t) పేరిత విద్యుచ్ఛాలక బలము లో మార్పులేదు.

- (1) 6 నుండి 12
- (2) 2 నుండి 6
- (3) 0 කාරයි 6
- (4) 6 నుండి 8

	(1) DYNAMO rule	()	(A)	Gauss	
	(2) Magnetic field	()	(B)	Fleming's right hand rule	
	(3) Electro magnet	()	(C)	Weber	
	(4) Magnetic flux	()	(D)	Microphone	
	ఈ క్రింది వాటిని సరిగ్గా జోడించి స	సరియైన జవాబు	ను ఎను	్లకోండి.	
	సమూహము $-\mathbf{A}$			సమూహము-B	
	(1) ලైనమో సూత్రము	()	(A)	ন*5	
	(2) అయస్కాంత క్షేతము	()	(B)	ప్లైమింగ్ కుడిచేతి నిబంధన	
	(3) విద్యుదయస్కాంతము	()	(C)	పెబర్	
	(4) అయస్కాంత అభివాహము	()	(D)	మై[కోఫ్లోన్	
	(1) 1-D, 2-C, 3-A, 4-B			(2) 1-B, 2-A, 3-D, 4-C	
	(3) 1-C, 2-D, 3-A, 4-B			(4) 1-A, 2-D, 3-B, 4-C	
89	P: The magnetic field 1	ines always	start	from north pole.	
	Q: The magnetic field				
	(1) P is true, Q is flase			(2) P is false, Q is true	
	(3) P and Q are false			(4) P and Q are true	
	P : ಅಯನ್ಗಾಂತ ಬಲರೆಖಲು ಎಲ್ಲ	ప్పుడు ఉత్తర (ర	సువము	మండి మొదలు అవుతాయి.	
	Q : అయస్కాంత బలరేఖలు 🗟	එ කින් ක්වරණ වා.			
	(1) P నిజము, Q తప్పు			(2) P తప్పు, Q నిజము	
	(3) P మరియు Q తప్పు			(4) P మరియు Q విజము	
90	If force acting on currer	nt carrying o	condu	ctor inside a magnetic field is $F = \frac{1}{2}$	$\frac{IlB}{\sqrt{2}}$.
				or and magnetic field intensity direc	
	అయస్కాంత క్షేతము లో ఉంచి	న విద్యుత్ బ్రవస్తి	ాస్తున్న	వాహకమముపై పని చేసే అండు $F = \frac{IIB}{\sqrt{2}}$.	వాహకవ

Group-B

Match the following and select correct option:

SPACE FOR ROUGH WORK / చిత్తు పనికి కేటాయించుకు కేంద

 $(3) 45^{\circ}$

తలమునకు, అయస్కాంత క్షేత దిశకు మధ్య కోణము ఏంత?

 $(2) 60^{\circ}$

(1) 900

88

Group-A

 $(4) - 30^{\circ}$

SECTION – III : CHEMISTRY (రసాయన శాస్త్రము)

91				er towards the nucleus is యే స్వభావమున్న ఆర్బిటాల్ ?
	(1) s	(2) p	(3) d	(4) f
92		48'ల బంధకోణం గల అణ	e bond angle is 107° න (3) H ₂ O	(4) An
93	1 nanometer is equ	ual to		
	 (1) 10⁻⁸ metre 1 నానో మీటరు దేనికి సమ 		(3) 10^{-2} metre	(4) 10^{-18} metre
	(1) 10 ⁻⁸ \$.	(2) 10^{-9} \$5.	(3) 10 ⁻² \(\bar{a} \).	(4) 10^{-18} \$5. dV/ 40
94		ing represents the corn మిక్క సరియైన ఋణవిద్యుద		gativity among halogens?
A	(1) F>Br>C1>I	(2) $I > Br > C1 > F$	(3) F > Cl > Br >	I (4) $C1 > F > Br > I$
95	The number of bon	nd pairs and lone pai	rs of electrons in H ₂ '	O molecule are
			ఒంటరి ఎలక్ట్రాన్ జంటల సం	
	(1) 2, 1	(2) 1, 2	(3) 2, 2	(4) 1, 3
96	The element having	g highest electronegar	tivity is	
	(1) Oxygen	(2) Fluorine	(3) Chlorine	(4) Helium
	అత్యధిక ఋణవిద్యుదాత్మ			
	(1) ఆక్సిజన్	(2)	(3) క్లోరిస్	

97	The functional gro	up in aldehyde is		
	ಆ ಲ್ಡಿ హైడ్ లో ఉండే (పమేం	య సమూహం		
	(1) -OH	(2) -CHO	(3) – COOH	(4) -COOR
00				
98	The formula of ch	loroform is		
	క్లోరోఫామ్ ఫార్ములా		00	
	(1) CH ₃ Cl	(2) CH ₂ Cl ₂	(3) CHCl ₃	(4) CCl ₄
99	The distance between	een two adjacent laye	rs in Graphite	
			0	
	రెండు (గా ఫైట్ పొరల మధ	ു പൗഠഠ		
	(1) 3 Å	(2) 3.35 A	(3) 4 Å	(4) 3.6 Å
100	Which of the follow	wing is saturated hyd	manaffer 2	
			rocarbon?	
	ఈ క్రింది వానిలో సంతృప్త	హైడ్రోకార్బన్	4	
	(1) C_2H_6	(2) C_2H_2	$(3)^{2}C_{2}H_{4}$	(4) C_4H_8
101	Volume of oxygen	required at STP for o	complete combustion	of 1 mole of ethane.
	(1) 39.2 litres	(2) 78.4 litres	(3)°156.8 litres	(4) 22.4 litres
	ఒక మోల్ ఈథెన్ పూర్తిగా ర	රహనం చేయడానికి అవసరమర	య్యే ఆక్సిజన్ ఘనపరిమాణము	, STP వద్ద
	(1) 39.2 లీటర్లు	(2) 78.4 లీటర్లు	(3) 156.8 లీటర్లు	(4) 22.4 లీటర్లు
			õ	
02	The IUPAC name	of $CH_3 - CH_2 - CH =$	= CH ₂ is	
	(1) But-3-ene	(2) But-1-ene	(3) Butyne	(4) Butane
	$CH_3 - CH_2 - CH =$	- CH ₂ ಮುಕ್ಕ IUPAC ಕ	నామము	
	(1) బ్యూట్-3-ఈన్	(2) బ్యూట్-1-ఈన్	(3) బ్యూటైన్	(4) బ్యూటేన్
	SPACE F	OR ROUGH WORK	/ చితు పనికి కేటాయించబ	යී <u>න స</u> లము

103	Which of the following equations is not balanced?								
	දුදිරදී	<u> </u> පිටසි රసాయన సమీకరణములలో తుల్యం చేయనది?							
	(1)	$C + O_2 \rightarrow CO_2$		(2)	$2AgCl \rightarrow 2Ag +$	-Cl ₂			
	(3)	$CaCO_3 \rightarrow CaO$	+CO ₂	(4)	$N_2 + O_2 \rightarrow NO$		C1 40 018 111		
104	Wh	ich of the follow	ring metals liberates l	vdro	ogen gas when re	acte	d with dil HCl 2		
101		Which of the following metals liberates hydrogen gas when reacted with dil. HCl? క్రింది వాటిలో సజల HCl తో చర్య జరిపినప్పుడు, హైడ్రోజన్ వాయువును విడుదల చేసే లోహం ఏది?							
			(2) Zn						
105	The	nature of non-n	netallic oxides is gene	erally					
	(1)	basic	(2) acidic	(3)	amphoteric	(4)	neutral		
	సాధా	సాధారణంగా అలోపా ఆక్సైడ్ ల స్వభావం ?							
	(1)	క్షార	(2) ఆమ్ల	(3)	ద్విస్వభావయుత	(4)	తటస్థం		
106	The	volume occupie	d by one gram of hy	drog	en gas at STP is				
	(1)	22.4 liters	(2) 5.6 liters	(3)	11.2 liters	(4)	44.8 liters		
	STE	లే వద్ద ఒక గ్రాము హైద్రి	ේ සබ් ක රාක්කර සැම් කරන් කරන් කරන් කරන් කරන්න සැම් සැම් සැම් සැම් සැම් සැම් සැම් සැම්	నపరివ	<u>ားအဝ</u>				
	(1)	22.4 b.	(2) 5.6 8.	(3)	11.2 8.	(4)	44.8 పి.		
107	The	colour of pheno	olphthalein indicator i	n Na	aOH solution is				
	(1)	pink	(2) yellow	(3)	brown	(4)	red		
	Nac	OH (దావణంలో ఫినా <u>ఫ</u>	లీన్ సూచిక రంగు		garaine, post o				
	(1)			(3)			ఎరుపు		
108	What is the chemical formula of hydronium ion?								
	హైడ్ర	ీనియం అయాను యొ	క్క రసాయనిక సాంకేతికం ఏడ	3?					
	(1)	H+	(2) OH ⁺	(3)	OH-	(4)	H ₃ O ⁺		

SECTION – IV : BIOLOGY (జీవశాస్త్రము)

121	121 The region in brain portion that controls hunger signals				
	(1) Diencephalon	(2) Mid brain	(3)	Cerebrum	(4) Medulla
	మెదడులో ని భాగ	ා පර්ථ හට දීම පරා විය	රුරුම්	ယ္ခ်ဝင်္ဂ	
		(2) మధ్య మెదడు			(4) మెడుల్లా
	PERIOD NAME OF THE				
122	Phenotype ratio of r	monohybrid cross is			
	ఏక సంకర సంకరీకరణం లో	దృశ్య రూప నిష్పత్తి			
	(1) 1:2:1	(2) 4:1	(3)	1:3:1	(4) 3:1
122	N 1				
123	Nocturnal animals as				
	(1) active during da			active during s	
	(3) active during wi	inter	(4)	active during n	ight
	බි శ ాచార జీవులు అనగా	Action (a) 1-			
	(1) పగటిపూట చురుకుగా		(2)	వేసవిలో చురుకుగా	
	(3) ಕಿಶಾಕಾಲಂಲ್ ಮರುಕು	u sa sa ai ai sinsaist	(4)	<u> පැමී </u>	ురుకుగా <u>జిల్లాల</u>
124	"Principles of Geolo	gy" was written by			
	(1) Malthus		(2)	Jean Baptist La	marck
rio Ar	(3) Charles Darwin	remain on od ano la	(4)	Sir Charles Lye	II manakam ada o
	"Principles of Geolo	gy" పుస్తకం బ్రాసిన వారు			
	(1) మాల్ట్రస్	* Charles and	(2)	జీన్ బాప్టిస్ట్ లామార్క్	
	(3) చార్లెస్ డార్విస్	di (ε)		చార్లెస్ లైల్	
	Teached the Control				
125	Who performed the	experiments on photo	otrop	ism ?	
	(1) Went	(2) Darwin	(3)	Lamark	(4) Langerhans
	కాంతి అనువర్తనం పైన ప్రయో	ాగాలు చేసిన శాస్త్రవేత్త			
	(1) බිංසි	(2) డార్విస్	(3)	లామార్క్	(4) లాంగర్ హాన్స్

126	Where do the fertili	zatio	n occurs in fema	ale?	irrossa, garvell		
	(1) Ovaries	(2)	Uterus	(3)	Fallopian tubes	(4)	Cervix
	స్త్రీలలో ఫలదీకరణం ఎక్కడ	සරාර	పతుంది ?				
	(1) అండాశయం	(2)	గర్భాశయ ి	(3)	స్త్రీ బీజవాహిక	(4)	ုဂ်ိုဆ်ဝ
127	The inner surface of are called	f the	small intestine c	onta	ins thousands of	fing	er like projections
	(1) Chyme	(2)	Villus [©]	(3)	Mucus	(4)	Spincter
	చిన్న [పేగు గోడల లోపలి త	ම වරණි	බ්ව సంఖ్యలో බ්ళ <mark>ූ</mark> කර	ස් බ්ප	్మాణాలను అంట	ూరు	
	(1) <u>ව</u> ිකි	(2)	అంత్ర చూషకాలు	(3)	శ్లేష్మం	(4)	సంపరిణి కండరం
			O				
128	Vegetative propagati	ion th	nrough leaves is	seen	in		
	(1) Vallisneria	(2)	Colacasia	(3)	Potato	(4)	Bryophyllum
	ప్రతాలద్వారా శాఖీయోత్పక్రి	ු සරා	పుకునే మొక్క				
	(1)	(2)	కొలకేసియా	(3)	బంగాళదుంప	(4)	රಣపాల
400	ii ii aradosi (ii)*		All the Victorials				
129	In which of the foll						
					Anaphase	(4)	Telophase
	ఈ ප්රිටේ නැට්වේ సమට්భස					9.5	
	(1) ప్రథమ దశ	(2)	మధ్యస్థ దశ	(3)	చలన దశ	(4)	യഠత്య దశ
			K 2	100			
130	Reproduction by me						
	(1) Ants		Bees		Wasps	(4)	In above all
	పార్ధినోజెనిసిస్ విధానం ద్వార	్రపత్యు	్రత్పత్తి ఈ క్రింది వానిల	ි <u>ක්</u> ස්	లో కనిసిస్తుంది		
	(1) చీమలు	(2)	తేనెటీగలు	(3)	కందిరీగలు	(4)	పైవన్నింటిలో
131	Emulsification is car	rried	out by which ju	ice?	es malches pare		
	(1) Bile juice				Pancreatic juice		
	(3) Intestinal juice		N.	(4)	None of the abo	ve	
	ఎమల్సీకరణం ఏ రసం వలన	కల్గున	»?				
	(1) పైత్య రసం			(2)	క్లోమ రసం		
	(3) ఆంత్ర రసం		00	(4)	పైవేవి కాదు		

132	Which of the following are correctly matched?				
Gas % in inhaled air % in exhaled air					
	(1) Oxygen	21%		16%	
	(2) Carbon dioxide	78%		78%	
	(3) Nitrogen	0.03%	4	1.4%	
	(4) None of the above				
	ఈ క్రింది వానిలో ఏ జత సరియైనది ? వాయువు ఉచ్చ్వాసించే వాయువులో గల % నిశ్వాసించే వాయువులో గల %				
	(1) ఆక్సీజన్	21%		16%	
	(2) కార్బన్ డై ఆక్సైడ్	78%		78%	
	(3)	0.03%	4.4%		
	(4)				
133	Who showed that oxyge			osynthesis ?	
	(1) Benson Calvin (2)	Cameleo Golgi	(3) Van Neil	(4) Robert Hill	
	కిరణజన్య సంయోగ (కియలో నీటి నుండి ఆక్సీజన్ విడుదల అగునని ఎవరు తెలిపారు ?				
	(1) బెన్సన్ కెల్విన్ (2)	ತಮಿಲಿಯಾ ಗಾಶ್ಚಿ	(3) వాన్ నీల్	(4) రాబర్థ్ హీల్	
1	Na gane (A)				
134	Bile juice contains which	h enzyme?			
	(1) Pepsin		(2) Ptyalin		
	(3) Renin (4) None of the above			oove	
	పైత్య రసంలో ఏ రకమైన ఎంజైమ్	ఉండును ?			
	(1) మ్ప్రేస్	Ladrid (t.)	(2) టయలిన్		
	(3)		(4) పైవేవి కాదు		
		9° 3814 1			
135	The concept of Ecologic	cal pyramid was	first introduced by _		
	(1) Slobodkin (2)	Charles Elton	(3) Lindeman	(4) Steele	
	ස්ත කරන සිරධායි (ఎ හි ප සි				
	(1) స్టోబోడ్కిస్ (2)	చార్లెస్ ఎల్టన్	(3) లిండెమాన్	(4) స్టీల్	

136	Sustainable development means		hig prikassemodinaris vedas wakt. Est		
			Stable growth		
	(3) Development without damaging	(4)	High yielding in less time		
	సుస్థిర అభివృద్ధి అనగా		2(4)		
	(1)	(2)	స్థిరమైన పెరుగుదల		
	(3) నష్టం వాటిల్లకుండా అభివృద్ధి చేయడం	(4)	తక్కువ సమయంలో ఎక్కువ ఉత్పత్తి చేయడం		
137	Fossils of the dinosaurs, ketosaurs are coll state.	lecte	d from district in Telangana		
	(1) Nizamabad (2) Mahaboobnagar	(3)	Adilabad (4) Medak		
	డైనోసార్ల, కెటోసార్లు శిలాజాలను తెలంగాణ రాష్ట్రంలోని		జిల్లా నుండి సేకరించ బడ్డాయి.		
	(1) నిజామాబాద్ (2) మహాబూబ్నగర్				
138	"Survival of fittest" is associated with		ම වැලින රෙලි වියන දකුණ පැකතිම නැකුවේ		
G	(1) Darwin	(2)	August Weismann		
	(3) Lamarck	(4)	Mendel		
"Survival of fittest" (మనుగడ కోసం పోరాటం లో బలవంతమైనవి జీవిస్తాయి) తో సంబంధం					
	(1) డార్విస్	(2)	ఆగస్టు వీసమన్		
	(3) లామార్క్	(4)	ಮಂಡಲ್ .		
139	Mountain top removal mining (MTR-Mou	ıntai	n Top Removal), devastate		
			Lithosphere (4) Hydrosphere		
	పర్వత ప్రాంతాలలో తవ్వకాలు చేపట్టి ఉపరితల మృత్తికన				
	నాశనం అవుతుంది.		antable in the configurate state.		
	(1) జీవ ద్రవ్య రాశి (2) పర్యావరణం	(3)	శిలావరణం (4) జలావరణం		
140	Among the following pairs, which one is	a m	is matched pair ?		
	(1) Rabbit - Primary consumer		Plant - Producer		
			(4) Giraffe - Secondary consumer		
	් ලීං කස් නිව්ධ සම නිව්ධ ක්රීම් කිරීම සම නිව්ධ ක්රීම් සම නිව්ධ සම නිව්ධ සම නිව්ධ සම නිව්ධ සම		Control Circum Careta China Ch		
	(1) కుందేలు - ప్రాథమిక వినియోగదారు	(2)	మొక్కలు - ఉత్పత్తిదారులు		
	(3) సింహం - మాంసాహారి		జిరాఫీ - ద్వితీయ వినియోగదారు		
			3		

141	How many chambe	How many chambers are there in a man's heart?				
	మానవుని హృదయంలో ఎన్ని గదులు కలవు ?					
	(1) 2	(2) 3 4	(3) 4	(4) 6		
142	Which of the follo	wing alkaloid is used	l as Antimalarial drus	, ?		
	(1) Reserpine	(2) Nimbin	(3) Morphine	(4) Quinine		
ensy	ఈ (දිංධින බීණි කම්රිරා	ත බිකත්සන් බ්බ්බ්නා එරක් පැ විසින් සම්බ්ට්	ల్కలాయిడ్ ఏది ?			
. 7		(2) నింబిస్		(4) 多克思思		
143	The functional gap	present between two	neurons is			
	(1) Perikaryon	(2) Axon	(3) Synapse	(4) Node of Ranvier		
	రెండు నాడీకణాల మధ్య ఉ	ండే క్రియాత్మక కాళీ ప్రదేశం	•			
	(1) పెరికార్యాన్	(2) ఆక్సాన్	(3) సైనాప్స్	(4) రామేర్ కణుపులు		
144	Excretory organs pr	resent in Nematoda a	re			
		(2) Renette cells		(4) Kidneys		
	බිකණි	సర్జకాంగాలు				
	(1) జ్వాలాకణాలు	(2) రెనెట్ కణాలు	(3) నెస్టీడియా	(4) කාළඩංග		
145	Which part of the b	orain is concern with	coughing and sneezi	ng?		
	(1) Cerebrum		(3) Diencephalon			
	మెడడులో ఏభాగం దగ్గడం,	తుమ్మడం వంటి చర్యల తో				
	(1) మస్తిప్కం		(3) ద్వార గొర్గం	(4) మజ్జాముఖం		
146	In which organ form	nation of urea takes 1	olace ?			
	(1) Kidney	(0)	(3) Liver	(4) Intestine		
	ఏ అవయవంలో యూరియ					
	(1) మూత్రపిండం	(2) ఊపిరితిత్తులు	(3) కాలేయం	(4) (කින		

147	What is the yellowish straw colored fluid that oozes out after the blood clots?					
	(1) Serum (2) Plasma	(3) Water	(4)	Urine		
	రక్తం గడ్డకట్టిన తర్వాత మిగిలిన గడ్డ పసుపురంగు (దవాన్ని ఏమంటారు ?					
	(1) సీరం (2) ఫ్లాస్మా	(3)	(4)	మూత్రం		
148	Doctors use which device to measure bl					
	(1) Sphygmomanometer	(2) Thermometer				
	(3) Telescope	(4) Stethoscope				
	డాక్టర్లు ఏ పరికరంతో రక్త పీడనాన్ని కొలుస్తారు ?					
	(1) స్పిగ్మోమానోమీటర్	(2) థర్మోమీటర్				
	(3)	(4) స్టేతస్కాపు				
149	Which of the following equations is correctly balanced?					
	(1) $6CO_2 + 2H_2O \rightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$					
	(2) $C_6H_{12}O_6 + O_2 \rightarrow 6CO_2 + 6H_2O + Energy$					
	(3) $CO_2 + 12H_2O \rightarrow C_6H_{12}O_6 + H_2O + 6O_2$					
	(4) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + Energy$					
	ఈ (පිට සිට සිට සිට සිට සිට සිට සිට සිට සිට ස					
	(1) $6CO_2 + 2H_2O \rightarrow C_6H_{12}O_6 + 6H_2O + 6O_2$					
	(2) $C_6H_{12}O_6 + O_2 \rightarrow 6CO_2 + 6H_2O + 88$					
	(3) $CO_2 + 12H_2O \rightarrow C_6H_{12}O_6 + H_2O + 6O_2$					
	(4) $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O + 48$					
150	How much of energy is stored in one A	ΓP molecule ?				
	(1) 10,200 Calories (2) 1,200 Calories	(3) 7,200 Calories	(4)	15,200 Calories		
	ఒక ATP లో ఎంత శక్తి నిలువ ఉండును ?					
ă .	(1) 10,200 පණ්ර්භා (2) 1,200 පණ්ර්භා	(3) 7,200 පණ්ර්භ	(4)	15,200 కెలోరీలు		
1						

click to campus

TG POLYCET 2020 Question Paper with Solution

Telangana State Polytechnic Common Entrance Test

Download more TG POLYCET Previous Year Question Papers: Click Here