

# click to campus

NIMCET 2024 Question Paper with Solution

National Institutes of Technology (NITs) MCA Entrance Exam

Download more NIMCET Previous Year Question Papers: Click Here



## **NIMCET - 2024**

| 01.        |                                                   | ne it take to slide a create the dock is at angle 45              |                                                   | along a loading dock by pulling on it with                        |
|------------|---------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|
|            | $(1) 3.18198 \times 10^3 \mathrm{J}$              | $(2)\ 3.18198\times 10^{2}$                                       | $J (3) 3.4341 \times 10^3 J$                      | $(4) 3.4341 \times 10^4 \mathrm{J}$                               |
| 02.        | Let $f: R \to R$ be a                             | function such that $f(0)$                                         | $=\frac{1}{\pi}$ and $f(x) = \frac{x}{e^{\pi x}}$ | - for $x \neq 0$ . Then                                           |
|            | (1) $f(x)$ is not continuous                      | uous at x = 0                                                     | (2) f(x) is co                                    | ontinuous but not differentiable at $x = 0$                       |
|            | (3) $f(x)$ is differential                        | ble at $x = 0$ and $f'(0) =$                                      | $= -\frac{\pi}{2}$ (4) None o                     | fthese                                                            |
| 03.        | The value of the limi                             | $t \lim_{x \to 0} \left( \frac{1^x + 2^x + 3^x + 4^x}{4} \right)$ | $\left(\frac{1}{x}\right)^{\frac{1}{x}}$ is       |                                                                   |
|            | (1) 1                                             | $(2) 3!^{1/3!}$                                                   | $(3) \ 3!^{1/4}$                                  | $(4) \ 4!^{1/4}$                                                  |
| 04.        |                                                   | which volume of the pa<br>-j+k, $c=i+2j-k$ i                      |                                                   | its whose three edges are represented by                          |
|            | (1)-1                                             | (2) 1                                                             | (3) 0                                             | (4) –2                                                            |
| <b>05.</b> | Consider the function                             | on $f(x) = x^{2/3} (6-x)^{1/3}$ . W                               | Which of the following st                         | atement is false?                                                 |
|            | (1) f is increasing in t                          | the interval $(0, 4)$                                             | (2) fis decreasing in                             | n the interval $(6, \infty)$                                      |
|            | (3) f is a point of infl                          | ection at $x = 0$                                                 | (4) f has a point of                              | inflection at $x = 6$                                             |
| 06.        | Lines $L_1, L_2,, L_{10}$                         | are distinct among wh                                             | nich the lines $L_2, L_4, L_6$                    | , $L_8, L_{10}$ are parallel to each other and the                |
|            |                                                   |                                                                   |                                                   | Spoint of intersection of pairs of lines from                     |
|            | the complete set $L_1$ ,                          |                                                                   | •                                                 |                                                                   |
|            | (1) 24                                            | (2) 25                                                            | (3) 26                                            | (4) 27                                                            |
| 07.        | . ,                                               | · /                                                               | wing is not always true:                          |                                                                   |
|            | $(1) \left  \operatorname{adj}(A) \right  \neq 0$ | $(2)  A  \neq 0$                                                  | $(3) \left  AA^{-1} \right  = 1$                  | $(4) \left  A \left( adj \left( A \right) \right) \right  \neq 1$ |
| 08.        | At how many points                                | the following curves in                                           | tersect $\frac{y^2}{9} - \frac{x^2}{16} = 1$ and  | $\frac{x^2}{4} + \frac{(y-4)^2}{16} = 1$                          |
|            | (1) 0                                             | (2) 1                                                             | (3) 2                                             | (4) 4                                                             |
| 09.        | The value of f(1) for                             | $f\left(\frac{1-x}{1+x}\right) = x+2 \text{ is}$                  |                                                   |                                                                   |
|            | (1) 1                                             | (2) 2                                                             | (3) 3                                             | (4) 4                                                             |
| 10.        | ` '                                               | _                                                                 | oup of 9 people. The pro                          | obability that a certain maried couple will                       |

(3) 2/3

(1) 5/9

(2) 1/2

(4) 4/9



| 11. | If $x = 1 + \sqrt[6]{2} + \sqrt[6]{4} + \sqrt[6]{4}$              | $\sqrt[6]{8} + \sqrt[6]{16} + \sqrt[6]{32}$ , then $\left(1\right)$ | $\left(1 + \frac{1}{x}\right)^{24} =$                                    |                                            |
|-----|-------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------|
|     | (1) 1                                                             | (2) 4                                                               | (3) 16                                                                   | (4) 24                                     |
| 12. | ` '                                                               | nber below, the smallest                                            | · /                                                                      | divided by 9, 10, 15 and 20 leaves the     |
|     | (1) 85                                                            | (2) 265                                                             | (3) 535                                                                  | (4) 355                                    |
| 13. | Let A and B be two ev                                             | ents defined on a sample                                            | e space $\Omega$ . Suppose $\mathbf{A}^{\scriptscriptstyle{\mathrm{C}}}$ | denotes the complement of A relative       |
|     | to the sample space ?                                             | 2. Then the probability ]                                           | $P((A \cap B^c) \cup (A^c \cap B^c))$                                    | s)) equals                                 |
|     | (1) $P(A) + P(B) + P(B)$                                          | $(A \cap B)$                                                        | (2) $P(A) + P(B) - P($                                                   | $A \cap B$ )                               |
|     | (3) $P(A) + P(B) + 2P$                                            | $P(A \cap B)$                                                       | (4) $P(A) + P(B) - 2P$                                                   | $(A \cap B)$                               |
| 14. | A speaks truth in 40% narrating some inciden                      |                                                                     | cases. The probability t                                                 | that they contradict each other while      |
|     | (1) 2/3                                                           | (2) 1/4                                                             | (3) 1/2                                                                  | (4) 1/3                                    |
| 15. | The points $(1, 1/2)$ an                                          | ad(3,-1/2) are                                                      |                                                                          |                                            |
|     | (1) In between the lin                                            | $ext{les } 2x + 3y = 6 \text{ and } 2x + 4$                         |                                                                          | posite side of the line $2x + 3y = -6$     |
|     | (3) On the same side                                              | of the line $2x + 3y = -6$                                          | (4) On the sar                                                           | me side of the line $2x + 3y = 6$          |
| 16. | If (4, 3) and (12, 5) are is                                      | e the two foci of an ellips                                         | e passing through the or                                                 | igin, then the eccentricity of the ellipse |
|     | $(1) \frac{\sqrt{13}}{9}$                                         | (2) $\frac{\sqrt{13}}{18}$                                          | $(3) \frac{\sqrt{17}}{18}$                                               | $(4) \frac{\sqrt{17}}{9}$                  |
| 17. | For what values of $\lambda$                                      | does the equation $6x^2$ –                                          | $xy + \lambda y^2 = 0$ represents                                        | s two perpendicular lines and two lines    |
|     | inclined at angle of $\frac{\pi}{4}$                              |                                                                     |                                                                          |                                            |
|     | (1) -6 and -2                                                     | (2) 6 and 1                                                         | (3) -6  and  -35                                                         | (4) -6 and 1                               |
| 18. | The value of $\underset{x\to 0}{\text{Lt}} \frac{e^x - 1}{1 - 1}$ | $\frac{e^{-x}-2x}{-\cos x}$ is equal to                             |                                                                          |                                            |
|     | (1) 2                                                             | (2) 1                                                               | (3) 0                                                                    | (4)-1                                      |
| 19. | The number of one-or                                              | ne functions $f:\{1,2,3\}$ –                                        | $\rightarrow$ {a,b,c,d,e} is                                             |                                            |
|     | (1) 125                                                           | (2) 60                                                              | (3) 243                                                                  | (4) None of the above                      |
| 20. | If one AM (Arithmeti                                              | ic mean) 'a' and two GN                                             | M's (Geometric means)                                                    | p and q be inserted between any two        |
|     | positive numbers, the                                             | value of $p^3 + q^3$ is                                             |                                                                          |                                            |

(3) 2pq / a

(4) p + q + a

(1) 2 a p q

(2) pq / a



| 21. | A coin is thrown 8 number of times. What is the probability of getting a head in an odd number of throw?                                                     |                                                             |                                                  |                                                                                                                                                                  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | (1) 3/4                                                                                                                                                      | (2) 1/4                                                     | (3) 1/2                                          | (4) 1/8                                                                                                                                                          |  |  |  |
| 22. | The value of $\tan\left(\frac{\pi}{4} + \frac{\pi}{4}\right)$                                                                                                | $\theta$ $\int \tan\left(\frac{3\pi}{4} + \theta\right)$ is |                                                  |                                                                                                                                                                  |  |  |  |
|     | (1) –2                                                                                                                                                       | (2) 2                                                       | (3) 1                                            | (4)-1                                                                                                                                                            |  |  |  |
| 23. | The value of $\sum_{r=1}^{n} \frac{1}{2^n} \frac{n}{r}$                                                                                                      | $\frac{P_r}{!}$ is:                                         |                                                  |                                                                                                                                                                  |  |  |  |
|     | (1) 2 <sup>n</sup>                                                                                                                                           | $(2) 1 - 2^{-n}$                                            | $(3) 2^n - 1$                                    | $(4) 2^{2n} - 1$                                                                                                                                                 |  |  |  |
| 24. | Let C donote the set of cardinality of C?                                                                                                                    | fall tuples (x, y) which s                                  | atisfy $x^2 - 2^y$ where x a                     | nd y are natural numbers. What is the                                                                                                                            |  |  |  |
|     | (1)0                                                                                                                                                         | (2) 1                                                       | (3) 2                                            | (4) 3                                                                                                                                                            |  |  |  |
| 25. | The value of series $\frac{2}{3!}$                                                                                                                           | $+\frac{4}{5!}+\frac{6}{7!}+\dots$ , is                     |                                                  |                                                                                                                                                                  |  |  |  |
|     | (1) 2e <sup>-2</sup>                                                                                                                                         | (2) e <sup>-2</sup>                                         | $(3) e^{-1}$                                     | $(4) 2e^{-1}$                                                                                                                                                    |  |  |  |
| 26. | If three distinct numbers are chosen randomly from the first 100 natural numbers, then the probability that a three of them are divisible by both 2 and 3 is |                                                             |                                                  |                                                                                                                                                                  |  |  |  |
|     | (1) 4/33                                                                                                                                                     | (2) 4/25                                                    | (3) 4/1155                                       | (4) 4/35                                                                                                                                                         |  |  |  |
| 27. | If the line $a^2x + ay + 1$                                                                                                                                  | = 0, for some real number                                   | per a, is normal to the cu                       | rve $xy = 1$ then                                                                                                                                                |  |  |  |
|     | (1) a < 0                                                                                                                                                    | (2) $0 \le a \le 1$                                         | (3) a > 0                                        | $(4)-1 \le a \le 1$                                                                                                                                              |  |  |  |
| 28. | Let $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, \\ 0, \end{cases}$                                                                                           | $x \neq 0$ . Then which of $x = 0$                          | the following is true                            |                                                                                                                                                                  |  |  |  |
|     | (1) f(x) is not continuo                                                                                                                                     |                                                             | (2) f(x) is not different                        | iable at $x = 0$                                                                                                                                                 |  |  |  |
|     | (3) f'(x) is not continu                                                                                                                                     | uous at $x = 0$                                             | (4) f'(x) is continuou                           | s at $x = 0$                                                                                                                                                     |  |  |  |
| 29. | If the perpendicular bise values of k are                                                                                                                    | ector of the line segment                                   | joining $p(1, 4)$ and $q(k, 3)$                  | 3) has y-intercept –4, then the possible                                                                                                                         |  |  |  |
|     | (1) –2 and 2                                                                                                                                                 | (2) -1  and  1                                              | (3) -3  and  3                                   | (4) -4  and  4                                                                                                                                                   |  |  |  |
| 30. | The equation $3x^2 + 10$                                                                                                                                     | $xy + 11y^2 + 14x + 12y +$                                  | 5 = 0 represents                                 |                                                                                                                                                                  |  |  |  |
|     | (1) a circle                                                                                                                                                 | (2) an ellipse                                              | (3) a hyperbola                                  | (4) a parabola                                                                                                                                                   |  |  |  |
| 31. | Mathematics, 24 passes<br>both Mathematics and                                                                                                               | ed Physics, and 43 passe<br>Physics, no more than 2         | ed Chemistry. Additiona<br>9 passed both Mathema | ics, and Chemistry, 37 students passed<br>ally, no more than 19 students passed<br>tics and Chemistry, and no more than<br>of students who could have passed all |  |  |  |

(3) 14

(4) 10

three examinations?

(2)9

(1) 12



| 32. | If $f(x) = \cos[\pi^2]x$                        | $+\cos\left[-\pi^2\right]x$ , where [.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | stands for the greatest i                                   | nteger function, then $f\left(\frac{\pi}{2}\right) =$                                 |
|-----|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|
|     | (1)-1                                           | (2) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3) 1                                                       | (4) 2                                                                                 |
| 33. | If for non–zero x,cf(                           | $f(x) + df\left(\frac{1}{x}\right) = \left \log  x \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $+3$ , where $c \neq d$ , then                              | $\int_{1}^{e} f(x) dx =$                                                              |
|     | $(1) \frac{(c-d)(2e-1)}{c^2-d^2}$               | (2) $\frac{(c-d)(3e-2)}{c^2-d^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(3) \frac{(c-d)(3e+2)}{c^2-d^2}$                           | $(4) \frac{(c-d)(2e+1)}{c^2-d^2}$                                                     |
| 34. | Find the cardinality of                         | the set C which is defin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $ed as C = \begin{cases} x \mid \sin 4x = -1 \end{cases}$   | $\frac{1}{2} \text{ for } \mathbf{x} \in \left(-9\pi, 3\pi\right) $                   |
|     | (1) 24                                          | (2) 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (3) 36                                                      | (4) 12                                                                                |
| 35. | The number of distinct is                       | t values of $\lambda$ for which t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | he vectors $\lambda^2 \hat{i} + \hat{j} + \hat{k}, \hat{i}$ | $+\lambda^2\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + \lambda^2\hat{k}$ are coplanar |
|     | (1) 1                                           | (2) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3) 3                                                       | (4) 6                                                                                 |
| 36. | The number of solution                          | on of $5^{1+ \sin x + \sin x ^2+\dots}=2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 for $x \in (-\pi, \pi)$ is                                |                                                                                       |
|     | (1) 2                                           | (2) 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3) 4                                                       | (4) infinite                                                                          |
| 37. | Let Z be the set of                             | of all integers, and o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | consider the set $X =$                                      | $= \{(x,y): x^2 + 2y^2 = 3, x, y \in Z\}$ and                                         |
|     | $Y = \{(x, y) : x > y, x, y \in \{0, y\}\}$     | $y \in Z$ . Then the numb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | er of elements in $X \cap Y$                                | is:                                                                                   |
|     | (1) 2                                           | (2) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (3) 3                                                       | (4) 4                                                                                 |
| 38. | If $\sin x = \sin y$ and $\cos x$               | s x = cos y, then the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $e \circ f x - y is$                                        |                                                                                       |
|     | $(1) \frac{\pi}{4}$                             | $(2) \frac{n\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3) nπ                                                      | (4) 2nπ                                                                               |
| 39. | Which of the following                          | g is TRUE?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |                                                                                       |
|     | (1) If f is continuous of                       | on [a, b], then $\int_a^b xf(x)dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $dx = x \int_{a}^{b} f(x) dx$                               |                                                                                       |
|     | (2) $\int_0^3 e^{x^2} dx = \int_0^5 e^{x^2} dx$ | $1+\int_5^3 e^{x^2} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |                                                                                       |
|     | (3) If f is continuous o                        | on [a, b], then $\frac{d}{dx} \left( \int_a^b f(x) dx \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (x)dx = f(x)                                                |                                                                                       |
|     | (4) Both (1) and (2)                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                                                                       |
| 40. | The vector $\vec{A} = (2x + $                   | $-1)\hat{i} + (x^2 - 6y)\hat{j} + (xy^2 - 6y)\hat{j} + ($ | $(2+3z)\hat{k}$ is a                                        |                                                                                       |
|     |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |                                                                                       |

(3) source field

(4) None of these

(1) sink field

(2) solenoidal field



| 41. | Given a set A with combined set?                                                                                                        | median m <sub>1</sub> =                                     | 2 and set B w                                        | ith n          | $m_2 = 4.$                      | What can we say about the r | nedian of the |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|----------------|---------------------------------|-----------------------------|---------------|
|     | (1) at most 1                                                                                                                           | (2) at m                                                    | ost 2                                                | (3)            | at least 1                      | (4) at least 2              |               |
| 42. | Consider the functi                                                                                                                     | on $f(x) = \begin{cases}                                  $ | $-x^{3} + 3x^{2} + 1$ ,<br>$\cos(x)$ ,<br>$e^{-x}$ , | if<br>if<br>if | $x \le 2$ $2 < x \le 4$ $x > 4$ |                             |               |
|     | Which of the following statement about $f(x)$ is true:<br>(1) $f(x)$ has a local maximum at $x = 1$ , which is also the global maximum. |                                                             |                                                      |                |                                 |                             |               |

- (2) f(x) has a local maximum at x = 2, which is not the global maximum.
- (3) f(x) has a local maximum at  $x = \pi$ , but it is not the global maximum.
- (4) f(x) has a global maximum at x = 0.
- 43. The two parabolas  $y^2 = 4a(x+c)$  and  $y^2 = 4bx$ , a > b > 0 cannot has a common normal unless

(1) 
$$c > 2(a+b)$$
 (2)  $c > 2(a-b)$  (3)  $c < 2(a-b)$  (4)  $c < \frac{2}{a-b}$ 

- 44. The system of equations x + 2y + 2z = 5, x + 2y + 3z = 6,  $x + 2y + \lambda z = \mu$  has infinitely many solutions if
  - (1)  $\lambda \neq 2$  (2)  $\lambda \neq 2, \mu \neq 5$  (3)  $\lambda = 2, \mu = 5$  (4)  $\mu \neq 5$
- 45. It is given that the mean, median and mode of a data set is  $1, 3^x$  and  $9^x$  respectively. The possible values of the mode is
  - (1) 1, 4 (2) 1, 9 (3) 3, 9 (4) 9, 8
- **46.** If |F| = 40 N (Newtons), |D| = 3m, and  $\theta = 60^{\circ}$ , then the work done by F acting from P to Q is
  - (1)  $60\sqrt{3}J$  (2) 120 J (3)  $60\sqrt{2}J$  (4) 60 J
- 47. A man starts at the origin O and walks a distance of 3 units in the north-east direction and then walks a distance of 4 units in the north-west direction to reach the point P. Then  $\overline{OP}$  is equal to
  - $(1) \frac{1}{\sqrt{2}} \left( -\hat{\mathbf{i}} + \hat{\mathbf{j}} \right) \qquad (2) \frac{1}{2} \left( \hat{\mathbf{i}} + \hat{\mathbf{j}} \right) \qquad (3) \frac{1}{\sqrt{2}} \left( \hat{\mathbf{i}} 7\hat{\mathbf{j}} \right) \qquad (4) \frac{1}{\sqrt{2}} \left( -\hat{\mathbf{i}} + 7\hat{\mathbf{j}} \right)$
- 48. There are 9 bottle labelled 1, 2, 3, ....., 9 and 9 boxes labelled 1, 2, 3, ....., 9. The number of ways one can put these bottles in the boxes so that each box gets one bottle and exactly 5 bottles go in their corresponding numbered boxes is
  - (1)  $9 \times^9 C_5$  (2)  $5 \times^9 C_5$  (3)  $25 \times^9 C_5$  (4)  $4 \times^9 C_5$
- **49.** A critical orthopedic surgery is performed on 3 patients. The probability of recovering a patient is 0.6. Then the probability that after surgery, exactly two of them will recover is
  - (1) 0.321 (2) 0.234 (3) 0.432 (4) 0.123



**50.** 

Region R is defined as region in first quadrant satisfying the condition  $x^2 + y^2 < 4$ . Given that a point p = (r, s)

|     | lies in R, what is                                                                                                                                        | the probability that $r > s$ ?                                                                                                                            |                                     |                                                                                       |  |  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|     | (1) 1                                                                                                                                                     | (2) 0                                                                                                                                                     | (3) 1/2                             | (4) 1/3                                                                               |  |  |  |  |  |  |  |
|     |                                                                                                                                                           | <b>Analytical Abil</b>                                                                                                                                    | ity & Logical F                     | Reasoning                                                                             |  |  |  |  |  |  |  |
| 01. | Later, he sold al                                                                                                                                         | ± •                                                                                                                                                       | • •                                 | aid a brokerage fee of 2% on the purchase. age fee of 2% on the sale. What is Aryan's |  |  |  |  |  |  |  |
|     | (1)6%                                                                                                                                                     | (2) 5.5%                                                                                                                                                  | (3) 6.1%                            | (4) 5.69%                                                                             |  |  |  |  |  |  |  |
| 02. | different dish fro<br>cola, lemonade,<br>dish and drink:                                                                                                  |                                                                                                                                                           |                                     |                                                                                       |  |  |  |  |  |  |  |
|     |                                                                                                                                                           | ln't order pizza or cola.<br>ordered salad but not lemor                                                                                                  | anda                                |                                                                                       |  |  |  |  |  |  |  |
|     |                                                                                                                                                           |                                                                                                                                                           | iauc.                               |                                                                                       |  |  |  |  |  |  |  |
|     |                                                                                                                                                           | 1                                                                                                                                                         |                                     |                                                                                       |  |  |  |  |  |  |  |
|     | Aditi ordered orange juice.                                                                                                                               |                                                                                                                                                           |                                     |                                                                                       |  |  |  |  |  |  |  |
|     | Who ordered the burger and what drink did they order?                                                                                                     |                                                                                                                                                           |                                     |                                                                                       |  |  |  |  |  |  |  |
|     | (1) Aditi, orange                                                                                                                                         | juice (2) Bharat, water                                                                                                                                   | (3) Chandan, lemo                   | onade (4) Deepika, cola                                                               |  |  |  |  |  |  |  |
| 03. | Odometer is to mileage as Compass is to                                                                                                                   |                                                                                                                                                           |                                     |                                                                                       |  |  |  |  |  |  |  |
|     | (1) Needle                                                                                                                                                | (2) Speed                                                                                                                                                 | (3) Direction                       | (4) Hiking                                                                            |  |  |  |  |  |  |  |
| 04. | The mean of consecutive positive integers from 2 to n is                                                                                                  |                                                                                                                                                           |                                     |                                                                                       |  |  |  |  |  |  |  |
|     | $(1) \frac{n+2}{2}$                                                                                                                                       | $(2) \frac{n(n+1)}{2}$                                                                                                                                    | $(3) \frac{n+1}{2}$                 | $(4) \frac{n-1}{2}$                                                                   |  |  |  |  |  |  |  |
| 05. | If 30th Septemb                                                                                                                                           | If 30th September, 1991 was a Wednesday, then what was the day on 14th March 1992?                                                                        |                                     |                                                                                       |  |  |  |  |  |  |  |
|     | (1) Sunday                                                                                                                                                | (2) Saturday                                                                                                                                              | (3) Wednesday                       | (4) Monday                                                                            |  |  |  |  |  |  |  |
| 06. | In the following                                                                                                                                          | question, three statements                                                                                                                                | and three conclusions a             | re given.                                                                             |  |  |  |  |  |  |  |
|     | <ol> <li>No intell</li> <li>Some late</li> <li>Conclusions:</li> <li>No stude</li> <li>Some point</li> <li>All poor</li> <li>Find out the most</li> </ol> | ents are intelligent. ligent person is lazy. zy people are poor ent is lazy. oor people are not intelligent people are lazy. st appropriate conclusion(s) | from the following opt              |                                                                                       |  |  |  |  |  |  |  |
|     | (1) Only conclus (3) Only conclus                                                                                                                         | sions 1 and 2 follow                                                                                                                                      | (2) Only conclusio                  |                                                                                       |  |  |  |  |  |  |  |
|     | (3) Only conclus                                                                                                                                          | DIOIT & TOHOWS                                                                                                                                            | (4) Only conclusions 2 and 3 follow |                                                                                       |  |  |  |  |  |  |  |



| 07. | three i           | ndividua   |                       | he island  | d: A, B a  | ınd C. Ea              | •          |                    | -           | nd the other tribe                 | •               |            |
|-----|-------------------|------------|-----------------------|------------|------------|------------------------|------------|--------------------|-------------|------------------------------------|-----------------|------------|
|     | Here a            | are their  | respons               | es:        |            |                        |            |                    |             |                                    |                 |            |
|     | Asays             | s, "Yes, I | 3 is a tru            | th-teller  | .,,        |                        |            |                    |             |                                    |                 |            |
|     | B says            | s, "No, I  | am not a              | a truth-t  | eller"     |                        |            |                    |             |                                    |                 |            |
|     | C says            | s, "B is a | liear."               |            |            |                        |            |                    |             |                                    |                 |            |
|     | Given             | that eac   | h individ             | lual is ei | ther a tru | uth-telle              | r or a lia | r, who is          | s telling t | he truth?                          |                 |            |
|     |                   | oth B an   |                       | (2) A c    |            |                        | (3) C      |                    |             | (4) B only                         |                 |            |
| 08. |                   | -          |                       |            |            | en as 20<br>e the last |            |                    | LUNGS       | S is written as 1                  | 907142112. 1    | IfBRAIN    |
|     | (1) 5             |            |                       | (2)9       |            |                        | (3) 4      |                    |             | (4) 2                              |                 |            |
| 09. | Study             | the foll   | lowing i              | nforma     | tion ca    | refully a              | and ans    | werthe             | given o     | uestion:                           |                 |            |
|     | ofD, v            | who sits   |                       | he left o  | fE. C si   | its third t            |            |                    |             | ing the centre.<br>not an immediat |                 |            |
|     | Who s             | sits oppo  | osite to A            | Λ?         |            |                        |            |                    |             |                                    |                 |            |
|     | (1)E              |            |                       | (2)G       |            |                        | (3) D      |                    |             | (4) F                              |                 |            |
| 10. | Select            | the pair   | ofword                | ls, which  | n are rela | ated in th             | ne same    | way as 1           | the capit   | alized words ar                    | re related to e | ach other. |
|     | DATA              | A: GRA     | PH                    |            |            |                        |            |                    |             |                                    |                 |            |
|     | $(1) \mathrm{Mo}$ | other: F   | ather                 | (2) Mi     | lk : Butt  | er                     | (3) Wa     | ater : G           | lass        | (4) Plant : Le                     | eaf             |            |
| 11. |                   | _          | g 20% ca<br>nis goods |            | ount, a tr | ader stil              | l earns a  | profit o           | of 11.119   | %. How much a                      | bove the cost   | price, the |
|     | (1) 40            | %          |                       | (2)30      | .33%       |                        | (3)28      | %                  |             | (4) 38.88%                         |                 |            |
| 12. | Select            | the one    | which is              | differen   | nt from t  | he other               | three.     |                    |             |                                    |                 |            |
|     | (1) HE            | EM         |                       | (2) NI     | KS         |                        | (3) JG     | P                  |             | (4) OLT                            |                 |            |
| 13. |                   |            |                       | •          | •          | nd Samu<br>y will me   | _          |                    | •           | days. They me                      | et at Delhi 5 d | lays back. |
|     | (1)35             |            |                       | (2) 60     |            |                        | (3)55      |                    |             | (4) 65                             |                 |            |
| 14. | Which             | n pairs o  | f bits car            | be join    | ed toget   | her to fo              | orm two    | words              | that hav    | e opposite mea                     | nings?          |            |
|     | ERT               |            |                       |            |            | EAR                    |            |                    | RED         | GOS                                |                 |            |
|     | 1                 | 2          | 3                     | 4          | 5          | 6                      | 7          | 8                  | 9           | 10                                 |                 |            |
|     | (1)(9,            | , 2), (5,  | 7)                    | (2) (1,    | 3), (8,    | 10)                    | (3)(1,     | , 5), (10          | ), 8)       | 10<br>(4) (4, 2), (7               | , 8)            |            |
| 15. | At wh             |            | etwee 2               |            |            |                        |            |                    |             | a clock in oppos                   |                 | (diametri- |
|     | (1) 2:4           | 15 pm      |                       | (2) 2:4    | 14 pm      |                        | (3) 2:     | $43\frac{9}{11}$ p | om          | $(4) \ 2:43\frac{7}{11}$           | pm              |            |



| 16. | In which year was A                                                                                                                                                        | rjun born?                                                                    |                                    |                             |                   |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------|-----------------------------|-------------------|--|--|--|--|--|
|     | Arjun at present is 25 years younger to his mother.                                                                                                                        |                                                                               |                                    |                             |                   |  |  |  |  |  |
|     | Arjun's brother, who was born in 1964, is 35 years younger to his mother.                                                                                                  |                                                                               |                                    |                             |                   |  |  |  |  |  |
|     | (1) 1964                                                                                                                                                                   | (2) 1944                                                                      | (3) 1954                           | (4) 1974                    |                   |  |  |  |  |  |
| 17. | Rajesh will not go to                                                                                                                                                      | the concert if Rakesh                                                         | goes. Rakesh will go to t          | he concert if his dog bar   | ks three times.   |  |  |  |  |  |
|     | (1) Rakesh will not g<br>(2) If Rajesh doesn't<br>(3) If Rakesh's dog b                                                                                                    | go to the concert unless<br>go to the concert, the<br>barks three times, then |                                    | concert.                    |                   |  |  |  |  |  |
| 18. |                                                                                                                                                                            | y teams participated. A they have reversible t-                               | All teams in the tournamer shirts. | nt have 5 to 15 players. If | f a team has more |  |  |  |  |  |
|     | Based only on the inf                                                                                                                                                      | ormation above, which                                                         | h of the following must be         | e true?                     |                   |  |  |  |  |  |
|     | (1) Teams that have                                                                                                                                                        | (1) Teams that have 13 players have reversible t-shirts.                      |                                    |                             |                   |  |  |  |  |  |
|     | (2) Teams that have 12 players do not have reversible t-shirts.                                                                                                            |                                                                               |                                    |                             |                   |  |  |  |  |  |
|     | (3) Teams with 8 players do not have reversible t-shirts.                                                                                                                  |                                                                               |                                    |                             |                   |  |  |  |  |  |
|     | (4) Only people on teams can have reversible t-shirts.                                                                                                                     |                                                                               |                                    |                             |                   |  |  |  |  |  |
| 19. | A cat climbs a 21-meter pole. In the first minute it climbs 3 meter and in the second minute it descends on meter. In how minutes the cat would reach the top of the pole? |                                                                               |                                    |                             |                   |  |  |  |  |  |
|     | (1) 21 minutes                                                                                                                                                             | (2) 18 minutes                                                                | (3) 19 minutes                     | (4) 20 minutes              |                   |  |  |  |  |  |
| 20. | Which out of the follow                                                                                                                                                    | owing words will appe                                                         | ar last in the dictionary          |                             |                   |  |  |  |  |  |
|     | (1) Compliment                                                                                                                                                             | (2) Compline                                                                  | (3) Complete                       | (4) Complicit               |                   |  |  |  |  |  |
| 21. | Arrange the words g                                                                                                                                                        | Arrange the words given below in a meaningful sequence.                       |                                    |                             |                   |  |  |  |  |  |
|     | (1) Software                                                                                                                                                               | (2) Code                                                                      | (3) Data                           | (4) Analysis                | (5) Report        |  |  |  |  |  |
|     | (1) 3, 1, 2, 4, 5                                                                                                                                                          | (2) 5, 4, 3, 1, 2                                                             | (3) 2, 1, 5, 3, 4                  | (4) 3, 1, 2, 5, 4           |                   |  |  |  |  |  |
| 22. | From the given option                                                                                                                                                      | From the given options, find the pair which is like the given pair 8:4        |                                    |                             |                   |  |  |  |  |  |
|     | (1) 45:5                                                                                                                                                                   | (2) 216:32                                                                    | (3)72:24                           | (4) 27 : 9                  |                   |  |  |  |  |  |
| 23. | Which one of the foll                                                                                                                                                      | owing is the odd one fi                                                       | rom the given alternative          | ?                           |                   |  |  |  |  |  |
|     | (1) Highest education                                                                                                                                                      | n (2) Salary                                                                  | (3) Years of experie               | ence (4) Age                |                   |  |  |  |  |  |
| 24. | What is the value of                                                                                                                                                       | $x^2 + y^2 = ?$                                                               |                                    |                             |                   |  |  |  |  |  |
|     | Statement I: xy = 5                                                                                                                                                        |                                                                               |                                    |                             |                   |  |  |  |  |  |
|     | <b>Statement II:</b> x + y                                                                                                                                                 |                                                                               |                                    |                             |                   |  |  |  |  |  |
|     | (1) Choose this option answered using the o                                                                                                                                | -                                                                             | be answered by using on            | e of the statements alon    | ne, but cannot be |  |  |  |  |  |

(3) Choose this option if the question can be answered by using either statement alone.(4) Choose this option if the question cannot be answered even by using both the statements together.

answered using the other statement.

(2) Choose this option if the question can be answered by using both the statements together, but cannot be



| 25. | •                                                                                                                                                          | ortrait of a man, Lucky (m<br>e portrait was Lucky lool                                                                                                    | · •                        | the only child of my paternal grandmother's                                                                                     |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|     | (1) His cousin                                                                                                                                             | (2) His uncle                                                                                                                                              | (3) His brother            | (4) Himself                                                                                                                     |  |  |  |  |  |  |
| 26. | -                                                                                                                                                          | This question contains six statements followed by four sets of combinations of three. Choose the set in which the combinations are most logically related: |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | A: Some building                                                                                                                                           | gs are not skyscrapers.                                                                                                                                    |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | B: Some skyscrap                                                                                                                                           | pers are not buildings.                                                                                                                                    |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | C: No structure i                                                                                                                                          | C: No structure is a skyscraper.                                                                                                                           |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | D: All skyscraper                                                                                                                                          | D: All skyscrapers are structures.                                                                                                                         |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | E: Some skyscrap                                                                                                                                           | pers are buildings.                                                                                                                                        |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | F: Some structure                                                                                                                                          | es are not buildings.                                                                                                                                      |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | (1) ACF                                                                                                                                                    | (2) BDF                                                                                                                                                    | (3) ACE                    | (4) FDA                                                                                                                         |  |  |  |  |  |  |
| 27. | the marks provide                                                                                                                                          | ed by the second judge ar iance of the marks prov                                                                                                          | e given by $Y = 10.5 + 2X$ | d on the performance of the participants. I where X is the marks provided by the firs ge is 100, then the variance of the marks |  |  |  |  |  |  |
|     | (1) 50                                                                                                                                                     | (2) 25                                                                                                                                                     | (3) 99                     | (4) 49.5                                                                                                                        |  |  |  |  |  |  |
| 28. |                                                                                                                                                            | the letters of the word N<br>he mirror image of the na                                                                                                     | ·                          | f a game is formed. What would be the firs                                                                                      |  |  |  |  |  |  |
|     | (1) B, T                                                                                                                                                   | (2) N, B                                                                                                                                                   | (3) T, B                   | (4) B, N                                                                                                                        |  |  |  |  |  |  |
| 29. | This question contains six statements followed by four sets of combinations of three. Choose the set in which the combinations are most logically related: |                                                                                                                                                            |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | A: All falcons fly high.                                                                                                                                   |                                                                                                                                                            |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | B: All falcons are                                                                                                                                         | B: All falcons are blind.                                                                                                                                  |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | C: All falcons are birds.                                                                                                                                  |                                                                                                                                                            |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | D: All birds are ye                                                                                                                                        | D: All birds are yellow.                                                                                                                                   |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | E: All birds are th                                                                                                                                        | E: All birds are thirsty.                                                                                                                                  |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | F: All falcons are                                                                                                                                         | F: All falcons are yellow.                                                                                                                                 |                            |                                                                                                                                 |  |  |  |  |  |  |
|     | (1) CDF                                                                                                                                                    | (2) BCA                                                                                                                                                    | (3) ABC                    | (4) DEF                                                                                                                         |  |  |  |  |  |  |
| 30. | tea, 25% prefer t                                                                                                                                          |                                                                                                                                                            | emaining 15% have no       | at 60% of the employees prefer coffee over<br>preference. If 20% of the employees who<br>ally tea?                              |  |  |  |  |  |  |
|     | (1) 75                                                                                                                                                     | (2) 65                                                                                                                                                     | (3) 50                     | (4) 55                                                                                                                          |  |  |  |  |  |  |

Two cars, Car A and Car B, are traveling on a highway. Car A starts from point X and travels at a constant

speed of 60 km/h, while Car B starts from the same point X but travels at a constant speed of 80 km/h. If both

(3) 20 KM

(4) 25 KM

cars travel for 1.5 hours, what is the difference in distance covered by Car B compared to Car A?

(2) 30 KM

31.

(1) 35 KM



**32.** Study the following diagram and answer the following question

|       | $\longrightarrow$ Married people          |
|-------|-------------------------------------------|
| T Q R | igoplus People who live in joint family   |
| S P   | $\triangle$ $\rightarrow$ School teachers |

By which letter, the married teachers who do not live in joint family are represented?

- (1) P
- (2) S
- (3) O
- (4)R

33. In the half yearly exam only 60% of the students were passed. Out of these (passed in half yearly) only 70% students are passed in annual exam, out of remaining students (who fail in half-yearly exam) 80% passed in annual exam. What percent of the students passed the annual exam?

- (1) 72%
- (2) 76%
- (3) 65%
- (4) 74%

#### 34. COMPREHENSION:

<u>Directions:</u> A, B, C, D, E, F and G are travelling in three different vehicles. There are at least two passengers in each vehicle – Swift, Creta, Nexon and only one of them is a male. There are two engineers, two doctors and three teachers among them.

- (i) C is a lady doctor and she does not travel with the pair of sisters A and F.
- (ii) B a male engineer, travels with only G, a teacher in a Swift.
- (iii) D is a male doctor.
- (iv) Two persons belonging to the same profession do not travel in the same vehicle.
- (v) A is not an engineer and travels in a Creta.
- (vi) The pair of sisters A and F travels in the same vehicle.

#### What is F's profession?

- (1) Doctor
- (2) Data inadequate
- (3) Engineer
- (4) Teacher

#### 35. COMPREHENSION:

<u>Directions:</u> A, B, C, D, E, F and G are travelling in three different vehicles. There are at least two passengers in each vehicle – Swift, Creta, Nexon and only one of them is a male. There are two engineers, two doctors and three teachers among them.

- (i) C is a lady doctor and she does not travel with the pair of sisters A and F.
- (ii) B a male engineer, travels with only G, a teacher in a Swift.
- (iii) D is a male doctor.
- (iv) Two persons belonging to the same profession do not travel in the same vehicle.
- (v) A is not an engineer and travels in a Creta.
- (vi) The pair of sisters A and F travels in the same vehicle.

#### In which vehicle does C travel?

- (1) Swift
- (2) Data inadequate
- (3) Nexon
- (4) Creta



#### **36.** COMPREHENSION:

<u>Directions:</u> A, B, C, D, E, F and G are travelling in three different vehicles. There are at least two passengers in each vehicle – Swift, Creta, Nexon and only one of them is a male. There are two engineers, two doctors and three teachers among them.

- (i) C is a lady doctor and she does not travel with the pair of sisters A and F.
- (ii) B a male engineer, travels with only G, a teacher in a Swift.
- (iii) D is a male doctor.
- (iv) Two persons belonging to the same profession do not travel in the same vehicle.
- (v) A is not an engineer and travels in a Creta.
- (vi) The pair of sisters A and F travels in the same vehicle.

#### Which of the following represents the three teachers?

(1) Data inadequate (2) GBF (3) GEA (4) GEF

#### 37. COMPREHENSION:

**<u>Direction:</u>** A, B, C, D and E are five different integer. When written in the ascending order of values, the difference between any two adjacent integers is 8. D is the greatest and A the least. B is greater than E but less than C. The sum of the integers is equal to E.

#### The value of A is:

(1) -18 (2) -17 (3) None of these (4) -15

#### 38. COMPREHENSION:

**<u>Direction:</u>** A, B, C, D and E are five different integer. When written in the ascending order of values, the difference between any two adjacent integers is 8. D is the greatest and A the least. B is greater than E but less than C. The sum of the integers is equal to E.

#### The sum of A and B is:

(1)-15 (2)-30 (3)-20 (4) None of these

#### 39. COMPREHENSION:

**<u>Direction:</u>** A, B, C, D and E are five different integer. When written in the ascending order of values, the difference between any two adjacent integers is 8. D is the greatest and A the least. B is greater than E but less than C. The sum of the integers is equal to E.

#### The greatest number has the value:

(1) 14 (2) 15 (3) 12 (4) 17

#### **40.** COMPREHENSION:

<u>Direction:</u> A, B, C, D and E are five different integer. When written in the ascending order of values, the difference between any two adjacent integers is 8. D is the greatest and A the least. B is greater than E but less than C. The sum of the integers is equal to E.

#### The sum of the integers is:

(1) -6 (2) -10 (3) None of these (4) -8



## **Computer Awareness**

| 01. | Given that numbers A sum A + B is |                                                                                                                                   |            | A and B are two 8 bit 2'   | 's Complement number    | with A = 11111111; B = 11111111. Then                                                 |  |  |  |  |  |
|-----|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------|-------------------------|---------------------------------------------------------------------------------------|--|--|--|--|--|
|     | (1) 0                             | 000001                                                                                                                            | 10         | (2) 11111100               | (3) 11111110            | (4) 00000000                                                                          |  |  |  |  |  |
| 02. | sequ                              |                                                                                                                                   | •          | •                          |                         | and A. If we generate first few numbers in to generate the numbers, then the position |  |  |  |  |  |
|     | (1) 1                             | 5                                                                                                                                 |            | (2) 12                     | (3) 9                   | (4) 10                                                                                |  |  |  |  |  |
| 03. | The                               | Boolear                                                                                                                           | n expressi | ion for the following tr   | uth table is            |                                                                                       |  |  |  |  |  |
|     | X                                 | y                                                                                                                                 | Z          | f                          |                         |                                                                                       |  |  |  |  |  |
|     | 0                                 | 0                                                                                                                                 | 0          | 0                          |                         |                                                                                       |  |  |  |  |  |
|     | 0                                 | 0                                                                                                                                 | 1          | 0                          |                         |                                                                                       |  |  |  |  |  |
|     | 0                                 | 1                                                                                                                                 | 0          | 1                          |                         |                                                                                       |  |  |  |  |  |
|     | 0                                 | 1                                                                                                                                 | 1          | 0                          |                         |                                                                                       |  |  |  |  |  |
|     | 1                                 | 0                                                                                                                                 | 0          | 0                          |                         |                                                                                       |  |  |  |  |  |
|     | 1                                 | 0                                                                                                                                 | 1          | 1                          |                         |                                                                                       |  |  |  |  |  |
|     | 1                                 | 1                                                                                                                                 | 0          | 0                          |                         |                                                                                       |  |  |  |  |  |
|     | 1                                 | 1                                                                                                                                 | 1          | 1                          |                         |                                                                                       |  |  |  |  |  |
|     | (1) I                             | (1) $F = x'yz' + xy'z + x'y'z'$                                                                                                   |            |                            | (2) $F = x'y'z' + x$    | xy'z + xyz'                                                                           |  |  |  |  |  |
|     | (3) 1                             | (3) $F = x'yz' + xy'z + xyz$ (4) None of these                                                                                    |            |                            |                         |                                                                                       |  |  |  |  |  |
| 04. | Cons                              | Consider the following 4-bit binary numbers represented in the 2's complement form: 1101 and 0100.                                |            |                            |                         |                                                                                       |  |  |  |  |  |
|     | Wha                               | What would be the result when we add them?                                                                                        |            |                            |                         |                                                                                       |  |  |  |  |  |
|     | (1)0                              | (1) 0001 and an overflow (2) 1001 and no overflow (3) 1001 and an overflow (4) 0001 and no overflow                               |            |                            |                         |                                                                                       |  |  |  |  |  |
| 05. |                                   | Which of the following interfaces perform the transfer of data between the memory and the I/O peripher without involving the CPU? |            |                            |                         |                                                                                       |  |  |  |  |  |
|     | (1) E                             | Branch I                                                                                                                          | nterface   | (2) Serial Interface       | (3) DMA                 | (4) DDA                                                                               |  |  |  |  |  |
| 06. | Whi                               | ch of the                                                                                                                         | followin   | ng is the smallest unit of | f data in a computer?   |                                                                                       |  |  |  |  |  |
|     | (1) E                             | Byte                                                                                                                              |            | (2) Bit                    | (3) Nibble              | (4) KB                                                                                |  |  |  |  |  |
| 07. | ` ′                               | •                                                                                                                                 | e progran  |                            | k temporary variables a |                                                                                       |  |  |  |  |  |
|     | a = 1                             |                                                                                                                                   | 1 0        |                            | 1 0                     |                                                                                       |  |  |  |  |  |
|     | b = 2                             | 20                                                                                                                                |            |                            |                         |                                                                                       |  |  |  |  |  |
|     | c = 3                             | 30                                                                                                                                |            |                            |                         |                                                                                       |  |  |  |  |  |
|     | d = a                             | a + c                                                                                                                             |            |                            |                         |                                                                                       |  |  |  |  |  |
|     |                                   | b + d                                                                                                                             |            |                            |                         |                                                                                       |  |  |  |  |  |
|     | f = c                             |                                                                                                                                   |            |                            |                         |                                                                                       |  |  |  |  |  |
|     | b = c                             |                                                                                                                                   |            |                            |                         |                                                                                       |  |  |  |  |  |
|     | e = 1                             |                                                                                                                                   |            |                            |                         |                                                                                       |  |  |  |  |  |
|     | d = 3                             |                                                                                                                                   |            |                            |                         |                                                                                       |  |  |  |  |  |
|     | retui                             | rnd+f                                                                                                                             |            |                            |                         |                                                                                       |  |  |  |  |  |



| (1) 5                                | te this program without s<br>(2) 6 | (3) 3                                                                    | (4) 4                |                         |
|--------------------------------------|------------------------------------|--------------------------------------------------------------------------|----------------------|-------------------------|
| The quotient, if                     | the binary number 1101             | 0111 is divided by 101, is                                               | s                    |                         |
| (1) 101011                           | (2) 101010                         | (3) 101101                                                               | (4) 111001           |                         |
| Which of the foll eral devices to tr |                                    | ed to establish a commun                                                 | ication link between | n a CPU and the periph- |
| (1) Memory add                       | ress register (2) Instru           | action register (3) Memo                                                 | ory data register    | (4) Index register      |
|                                      |                                    | ess/data bus that uses RA<br>nemory capacity of 64 KI                    | <u> </u>             | * *                     |
| (1) 32                               | (2) 16                             | (3) 64                                                                   | (4) 8                |                         |
| The primary pur                      | pose of cache memory in            | a computer system is                                                     |                      |                         |
| (1) to manage in                     | put and output operation           | ns between the CPU and 1                                                 | peripherals          |                         |
| 2) to temporari                      | y store frequently acces           | sed data and instructions                                                | for faster access by | the CPU                 |
| 3) to permanent                      | ly store data and progra           | ms                                                                       |                      |                         |
| (4) to provide ad                    | ditional storage space w           | hen the main memory is f                                                 | full                 |                         |
| Which of the foll                    | owing do not affects CP            | U performance?                                                           |                      |                         |
| (1) Cache size                       | (2) Number of co                   | ores (3) Amount of RA                                                    | AM (4) Clock spe     | eed                     |
| _                                    |                                    | es. The page size is 4 KB.<br>8-page table entries and i                 | <u> </u>             |                         |
| (1) 11 bits                          | (2) 15 bits                        | (3) 13 bits                                                              | (4) 20 bits          |                         |
| literate, and the                    |                                    | oyed, the square stands f<br>hful. Study the figure wit<br>aployed only. |                      |                         |
|                                      |                                    | 5<br>9<br>0<br>9<br>4<br>8                                               |                      |                         |
| (1) 4                                | (2) 8                              | (3) 1                                                                    | (4) 11               |                         |
| Cache memory f                       | iunctions as an intermedia         | arv between                                                              |                      |                         |

(1) RAM and ROM (2) CPU and RAM (3) CPU and Hard Disk

(4) None of these



| 16.        | Let the given numbers 11001, 1001 and 111001 be correspond to the 2's complement representation. Then with which one of the following decimal numbers, the given numbers match? |                                                          |                                                 |                                   |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------|-----------------------------------|--|--|--|--|--|
|            | (1) $-25$ , $-9$ and $-57$ ,                                                                                                                                                    | respectively                                             | (2)-7, -7, and $-7,$ respectively               |                                   |  |  |  |  |  |
|            | (3)-6, -6, and $-6, $ re                                                                                                                                                        | spectively                                               | (4) 25, 9 and 57, respectively                  |                                   |  |  |  |  |  |
| <b>17.</b> | The range of the exponent E in the IEEE754 double precision (Binary 64) format is                                                                                               |                                                          |                                                 |                                   |  |  |  |  |  |
|            | $(1)-1023 \le E \le 10$                                                                                                                                                         | 23                                                       | $(2) -1022 \le E \le 1022$                      |                                   |  |  |  |  |  |
|            | $(3)-1023 \le E \le 10$                                                                                                                                                         | 22                                                       | $(4)-1022 \le E \le 1023$                       |                                   |  |  |  |  |  |
| 18.        | ` '                                                                                                                                                                             |                                                          | art of an instruction format in CPU processing? |                                   |  |  |  |  |  |
|            | (1) Source operand                                                                                                                                                              |                                                          |                                                 |                                   |  |  |  |  |  |
| 19.        | Any given truth table can be represented by                                                                                                                                     |                                                          |                                                 |                                   |  |  |  |  |  |
|            | (1) a product of sum I                                                                                                                                                          | Boolean expression                                       | (2) All of the options                          |                                   |  |  |  |  |  |
|            | (3) a sum of product 1                                                                                                                                                          | Boolean expression                                       | (4) a Karnaugh map                              |                                   |  |  |  |  |  |
| 20.        | The expression P + QR is the reduced form of                                                                                                                                    |                                                          |                                                 |                                   |  |  |  |  |  |
|            |                                                                                                                                                                                 |                                                          | (3)(P+Q)(P+R)                                   | (4) PQ + QR                       |  |  |  |  |  |
|            |                                                                                                                                                                                 | Gene                                                     | eral English                                    |                                   |  |  |  |  |  |
| 21.        | Choose the correct combination of preposition.  "The cat jumped the table                                                                                                       |                                                          |                                                 |                                   |  |  |  |  |  |
|            |                                                                                                                                                                                 |                                                          | (3) into, beside                                | (4) onto, towards                 |  |  |  |  |  |
| 22.        | The company's growth in revenue surprised analysts.                                                                                                                             |                                                          |                                                 |                                   |  |  |  |  |  |
|            |                                                                                                                                                                                 | (2) gradual                                              |                                                 | (4) exponential                   |  |  |  |  |  |
| 23.        | Identify the word that                                                                                                                                                          | Identify the word that means the same as "ostentatious": |                                                 |                                   |  |  |  |  |  |
|            | (1) Lavish                                                                                                                                                                      | (2) Simple                                               | (3) Modest                                      | (4) Unassuming                    |  |  |  |  |  |
| 24.        | Write the antonym for 'Inscrutable':                                                                                                                                            |                                                          |                                                 |                                   |  |  |  |  |  |
|            | (1) Comprehensible                                                                                                                                                              | (2) Mysterious                                           | (3) Opaque                                      | (4) Obscure                       |  |  |  |  |  |
| 25.        | Choose the best option that indicates the change of voice for the sentence given below:                                                                                         |                                                          |                                                 |                                   |  |  |  |  |  |
|            | Did Alice invite you?                                                                                                                                                           |                                                          |                                                 |                                   |  |  |  |  |  |
|            | (1) Were you invited by Alice?                                                                                                                                                  |                                                          | (2) Was Alice invited you?                      |                                   |  |  |  |  |  |
|            | (3) Had you invited Alice?                                                                                                                                                      |                                                          | (4) Did you invited by Alice?                   |                                   |  |  |  |  |  |
| 26.        | Which of the following is an essential element of a technical report?                                                                                                           |                                                          |                                                 |                                   |  |  |  |  |  |
|            | (1) Anecdotes and personal opinions                                                                                                                                             |                                                          | (2) Statistical data and analysis               |                                   |  |  |  |  |  |
|            | (3) Creative storytelling                                                                                                                                                       |                                                          | (4) Emotional appeals                           |                                   |  |  |  |  |  |
| 27.        | Select the correct meaning of 'Peruse':                                                                                                                                         |                                                          |                                                 |                                   |  |  |  |  |  |
|            | (1) Continue                                                                                                                                                                    | (2) Pursue                                               | (3) Examine                                     | (4) Rescue                        |  |  |  |  |  |
| 28.        | (1) I prefer coffee over                                                                                                                                                        |                                                          | •                                               | rested on learning new languages. |  |  |  |  |  |



**29.** Select the appropriate synonym for 'coercive':

(1) Gentle

(2) Forceful

(3) Corrective

(4) Merciful

**30.** What does the idiom "jump on the bandwagon" mean?

(1) To join a popular trend or activity

(2) To criticize something unfairly

(3) To repair a vehicle

(4) To start a business

## **Answer Key**

## **Mathematics**

|         |         |         |           | 11166      |          | ,        |         |         |         |
|---------|---------|---------|-----------|------------|----------|----------|---------|---------|---------|
| 01.(1)  | 02. (4) | 03. (4) | 04. (1)   | 05. (3)    | 06. (3)  | 07. (4)  | 08. (3) | 09. (2) | 10. (4) |
| 11. (3) | 12. (4) | 13. (4) | 14. (3)   | 15. (1)    | 16. (4)  | 17. (3)  | 18. (3) | 19. (2) | 20.(1)  |
| 21. (3) | 22. (4) | 23. (2) | 24. (3)   | 25. (3)    | 26. (3)  | 27. (1)  | 28. (3) | 29. (4) | 30. (2) |
| 31. (3) | 32. (1) | 33. (2) | 34. (2)   | 35. (2)    | 36. (3)  | 37. (2)  | 38. (4) | 39. (2) | 40.(1)  |
| 41. (4) | 42. (2) | 43. (2) | 44. (3)   | 45. (1)    | 46. (4)  | 47. (4)  | 48. (1) | 49. (3) | 50. (3) |
|         |         | A       | Analytica | al Ability | & Logi   | cal Reas | oning   |         |         |
| 01. (4) | 02. (1) | 03. (3) | 04. (1)   | 05. (4)    | 06. (1)  | 07. (3)  | 08. (4) | 09. (4) | 10. (2) |
| 11. (4) | 12. (3) | 13. (3) | 14. (1)   | 15. (4)    | 16. (3)  | 17. (3)  | 18. (1) | 19. (3) | 20. (2) |
| 21.(1)  | 22. (4) | 23. (1) | 24. (2)   | 25. (1)    | 26. (2)  | 27. (2)  | 28. (2) | 29. (1) | 30. (2) |
| 31. (2) | 32. (4) | 33. (4) | 34. (3)   | 35. (3)    | 36. (3)  | 37. (1)  | 38. (3) | 39. (1) | 40. (2) |
|         |         |         |           | Comput     | er Aware | eness    |         |         |         |
| 01. (3) | 02. (2) | 03. (4) | 04. (4)   | 05. (3)    | 06. (2)  | 07. (3)  | 08. (1) | 09. (3) | 10. (2) |
| 11. (2) | 12. (3) | 13. (2) | 14. (2)   | 15. (2)    | 16. (2)  | 17. (4)  | 18. (2) | 19. (2) | 20. (3) |

### **General English**

21. (4) 22. (4) 23. (1) 24. (1) 25. (1) 26. (2) 27. (3) 28. (1) 29. (2) 30. (1)