

click to campus

NEET 2023 Question Paper with Solution

National Eligibility-cum-Entrance Test (NEET) for admission to the undergraduate medical courses in all medical institutions including those governed under any other law

Download more NEET Previous Year Question Papers: Click Here

NEET UG 2023

Date: 7 May 2023

Booklet Code: E1

Time: 3 Hrs 20 Min Maximum Marks: 720

Important Instructions:

- The test is of 3 hours 20 minutes duration and the Test Booklet contains 200 multiple choice questions (four options with a single correct answer) from Physics, Chemistry and Biology (Botany and Zoology).
 questions in each subject are divided into two sections (A and B) as per details given below:
 - (a) Section A shall consist of 35 (Thirty-five) Questions in each subject (Question Nos. 1 to 35, 51 to 85, 101 to 135 and 151 to 185). All Questions are compulsory.
 - (b) **Section B** shall consist of **15 (Fifteen)** questions in each subject (Question Nos. 36 to 50, 86 to 100, 136 to 150 and 186 to 200). In section B, a candidate needs to **attempt any 10 (Ten)** questions out of **15 (Fifteen)** in each subject.

Candidates are advised to read all 15 questions in each subject of Section-B before they start attempting the question paper. In the event of a candidate attempting more than ten questions, the first ten questions answered by the candidate shall be evaluated.

- Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, 1 mark will be deducted from the total scores. The maximum marks are 720.
- Use Blue / Black Ball point Pen only for writing particulars on this page / marking responses on Answer Sheet
- Rough work is to be done in the space provided for this purpose in the Test Booklet only.
- On completion of the test, the candidate must handover the Answer Sheet (ORIGINAL and OFFICE Copy)
 to the Invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet
 with them.
- 6. The CODE for this Booklet is E1.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet. Use of white fluid for correction is **NOT** permissible on the Answer Sheet.
- 8. Each candidate must show on-demand his/her Admit Card to the Invigilator.
- 9. No candidate, without special permission of the Centre Superintendent or Invigilator, would leave his/her seat.
- 10. Use of Electronic/Manual Calculator is prohibited.
- 11. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Room/Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 12. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- The candidates will write the Correct Test Booklet Code as given in the Test Booklet / Answer Sheet in the Attendance Sheet.

PHYSICS

SECTION-A

1.	Let a wire be suspended from the ceiling (rigid support) and stretched by a weight W attached at its free end
	The longitudinal stress at any point of cross-sectional area A of the wire is

(1) 2W/A

(2) W/A

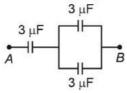
(3) W/2A

(4) Zero

Answer (2)

The ratio of radius of gyration of a solid sphere of mass M and radius R about its own axis to the radius of gyration of the thin hollow sphere of same mass and radius about its axis is

(1) 3:5


(2) 5:3

(3) 2:5

(4) 5:2

Answer (1*)

3. The equivalent capacitance of the system shown in the following circuit is

(1) 2 µF

(2) 3 µF

(3) 6 µF

(4) 9 µF

Answer (1)

4. A football player is moving southward and suddenly turns eastward with the same speed to avoid an opponent.

The force that acts on the player while turning is

(1) Along eastward

(2) Along northward

(3) Along north-east

(4) Along south-west

Answer (3)

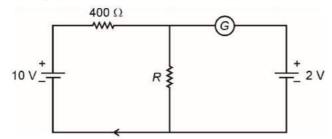
5. If $\oint \vec{E} \cdot \vec{dS} = 0$ over a surface, then

- (1) The number of flux lines entering the surface must be equal to the number of flux lines leaving it
- (2) The magnitude of electric field on the surface is constant
- (3) All the charges must necessarily be inside the surface
- (4) The electric field inside the surface is necessarily uniform

Answer (1)

6. The potential energy of a long spring when stretched by 2 cm is *U*. If the spring is stretched by 8 cm, potential energy stored in it will be

(1) 2 U


(2) 4 U

(3) 8 U

(4) 16 U

Answer (4)

7. If the galvanometer G does not show any deflection in the circuit shown, the value of R is given by

(1) 200Ω

(2) 50Ω

(3) 100 Ω

(4) 400 Ω

Answer (3)

8. A 12 V, 60 W lamp is connected to the secondary of a step-down transformer, whose primary is connected to ac mains of 220 V. Assuming the transformer to be ideal, what is the current in the primary winding?

(1) 0.27 A

(2) 2.7 A

(3) 3.7 A

(4) 0.37 A

Answer (1)

9. A full wave rectifier circuit consists of two p-n junction diodes, a centre-tapped transformer, capacitor and a load resistance. Which of these components remove the ac ripple from the rectified output?

(1) A centre-tapped transformer

(2) p-n junction diodes

(3) Capacitor

(4) Load resistance

Answer (3)

10. Light travels a distance *x* in time *t*₁ in air and 10*x* in time *t*₂ in another denser medium. What is the critical angle for this medium?

(1) $\sin^{-1}\left(\frac{t_2}{t}\right)$

 $(2) \quad \sin^{-1}\left(\frac{10t_2}{t_1}\right)$

(3) $\sin^{-1}\left(\frac{t_1}{10 t_2}\right)$

(4) $\sin^{-1} \left(\frac{10 \ t_1}{t_2} \right)$

Answer (4)

11. Resistance of a carbon resistor determined from colour codes is (22000 \pm 5%) Ω . The colour of third band must be

(1) Red

(2) Green

(3) Orange

(4) Yellow

Answer (3)

12. Given below are two statements:

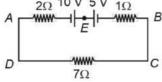
Statement I: Photovoltaic devices can convert optical radiation into electricity.

Statement II: Zener diode is designed to operate under reverse bias in breakdown region.

In the light of the above statements, choose the *most appropriate* answer from the options given below.

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

Answer (1)


13.	The magnetic energy stored in an inductor of inducta	ance 4	4 μH carrying a current of 2 A is
	(1) 4 μJ	(2)	4 mJ
	(3) 8 mJ	(4)	8 μJ
	Answer (4)		
14.	The angular acceleration of a body, moving along th	e circ	umference of a circle, is
	(1) Along the radius, away from centre	(2)	Along the radius towards the centre
	(3) Along the tangent to its position	(4)	Along the axis of rotation
	Answer (4)		
15.	A Carnot engine has an efficiency of 50% when its s sink is	ource	is at a temperature 327°C. The temperature of the
	(1) 27°C	(2)	15°C
	(3) 100°C	(4)	200°C
	Answer (1)		
16.	Two bodies of mass m and $9m$ are placed at a distance bodies where the gravitational field equals zero, will		
	$(1) -\frac{8Gm}{R}$	(2)	_ <u>12Gm</u> R
	$(3) -\frac{16Gm}{R}$	(4)	<u>20 Gm</u>
	Answer (3)		
17.	A vehicle travels half the distance with speed \boldsymbol{v} and is	the re	maining distance with speed 2v. Its average speed
	$(1) \frac{V}{3}$		$\frac{2v}{3}$
	$(3) \frac{4v}{3}$	(4)	$\frac{3v}{4}$
	Answer (3)		
18.	The amount of energy required to form a soap bubb tension of soap solution = 0.03 N m ⁻¹)	ole of	radius 2 cm from a soap solution is nearly (surface
	(1) 30.16 × 10 ⁻⁴ J		
	(2) 5.06 × 10 ⁻⁴ J (3) 3.01 × 10 ⁻⁴ J		
	(4) 50.1 × 10 ⁻⁴ J		
	Answer (3)		
19.	The minimum wavelength of X-rays produced by a V volts is proportional to	n ele	ctron accelerated through a potential difference of
	(1) √ <i>V</i>	(2)	$\frac{1}{V}$
	$(3) \frac{1}{\sqrt{V}}$	(4)	V ²
	Answer (2)		

20.	C a Sth			
	$\left(\frac{1}{16}\right)$ of its initial value?			
	(1) 20 minutes	(2) 40 minutes		
	(3) 60 minutes	(4) 80 minutes		
	Answer (4)			
21.	A metal wire has mass (0.4 ± 0.002) g, radius (0.3 possible percentage error in the measurement of de		ximum	
	(1) 1.2%	(2) 1.3%		
	(3) 1.6%	(4) 1.4%		
	Answer (3)			
22.	In a plane electromagnetic wave travelling in free sp a frequency of 2.0 × 10 ¹⁰ Hz and amplitude 48 V m	23	2000	
	(Speed of light in free space = 3×10^8 m s ⁻¹)			
	(1) $1.6 \times 10^{-9} \text{ T}$	(2) $1.6 \times 10^{-8} \text{ T}$		
	(3) $1.6 \times 10^{-7} \text{ T}$	(4) $1.6 \times 10^{-6} \text{ T}$		
	Answer (3)			
23.	The temperature of a gas is -50°C. To what temper increased by 3 times?	ature the gas should be heated so that the rms sp	eed is	
	(1) 669°C	(2) 3295°C		
	(3) 3097 K	(4) 223 K		
	Answer (2)			
24.	An ac source is connected to a capacitor C. Due to	decrease in its operating frequency		
	(1) Capacitive reactance decreases	(2) Displacement current increases		
	(3) Displacement current decreases	(4) Capacitive reactance remains constant		
	Answer (3)			
25.	For Young's double slit experiment, two statements	are given below:		
	Statement I : If screen is moved away from the properties constant.	lane of slits, angular separation of the fringes re	mains	
	Statement II: If the monochromatic source is wavelength, the angular separation of fringes decreased		larger	
	In the light of the above statements, choose the con-	rect answer from the options given below:		
	(1) Both Statement I and Statement II are true.	(2) Both Statement I and Statement II are false).	
	(3) Statement I is true but Statement II is false.	(4) Statement I is false but Statement II is true.		
	Answer (3)			
26.	In hydrogen spectrum, the shortest wavelength in Bracket series is	the Balmer series is λ . The shortest wavelength	in the	
	(1) 2λ	(2) 4λ		
	(3) 9λ	(4) 16λ		
	Answer (2)			

27.	The work functions of Caesium (Cs), Potassium (K) and Sodium (Na) are 2.14 eV, 2.30 eV and 2.75 eV respectively. If incident electromagnetic radiation has an incident energy of 2.20 eV, which of these photosensitive surfaces may emit photoelectrons?					
		Cs only				
	(2)	Both Na and K				
	(3)	K only				
		Na only				
	Ans	swer (1)				
28.	The	errors in the measurement which arise due	to unp	redictable fluctuations in temperature and voltage		
	sup	ply are				
	(1)	Instrumental errors	(2)	Personal errors		
	(3)	Least count errors	(4)	Random errors		
	Ans	swer (4)				
29.		series <i>LCR</i> circuit, the inductance <i>L</i> is 10 mH uency at which resonance occurs is	I, сара	citance C is 1 μF and resistance R is 100 $\Omega.$ The		
	(1)	15.9 rad/s	(2)	15.9 kHz		
	(3)	1.59 rad/s	(4)	1.59 kHz		
	Ans	swer (4)	100700			
30.	The	venturi-meter works on				
	(1)	Huygen's principle	(2)	Bernoulli's principle		
		The principle of parallel axes	(4)	The principle of perpendicular axes		
		swer (2)				
31.		ratio of frequencies of fundamental harmonic pare length is	roduce	ed by an open pipe to that of closed pipe having the		
	(1)	1:2	(2)	2:1		
	(3)	1:3	(4)	3:1		
	Ans	wer (2)				
32.		electric dipole is placed at an angle of 30° with a ue equal to 4 N m. Calculate the magnitude of a		tric field of intensity 2 × 10 ⁵ N C ⁻¹ . It experiences a on the dipole, if the dipole length is 2 cm.		
		8 mC		6 mC		
		4 mC	7.1977229.00	2 mC		
	00000000	swer (4)	(- /	1 TABLE		
33.		magnitude and direction of the current in the fo	llowing	a circuit is		
JJ.	THE	20 10 V 5 V 10	MOWING	, on outers		

- (1) 0.2 A from B to A through E
- (2) 0.5 A from A to B through E
- (3) $\frac{5}{9}$ A from A to B through E
- (4) 1.5 A from B to A through E

Answer (2)

- 34. The net magnetic flux through any closed surface is
 - (1) Zero

(2) Positive

(3) Infinity

(4) Negative

Answer (1)

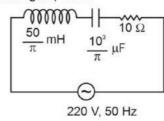
- A bullet is fired from a gun at the speed of 280 m s⁻¹ in the direction 30° above the horizontal. The maximum height attained by the bullet is $(g = 9.8 \text{ m s}^{-2}, \sin 30^{\circ} = 0.5)$
 - (1) 2800 m

(2) 2000 m

(3) 1000 m

(4) 3000 m

Answer (3)


SECTION-B

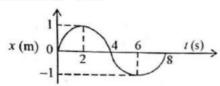
- Two thin lenses are of same focal lengths (f), but one is convex and the other one is concave. When they are 36. placed in contact with each other, the equivalent focal length of the combination will be
 - (1) Zero

(4) Infinite

Answer (4)

The net impedance of circuit (as shown in figure) will be 37.

(1) $10\sqrt{2} \Omega$

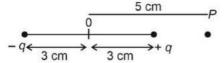

(2) 15 Ω

(3) $5\sqrt{5} \Omega$

(4) 25 Ω

Answer (3)

38. The x-t graph of a particle performing simple harmonic motion is shown in the figure. The acceleration of the particle at t = 2 s is



(2) $-\frac{\pi^2}{8} \text{ m s}^{-2}$ (4) $-\frac{\pi^2}{16} \text{ m s}^{-2}$

(3) $\frac{\pi^2}{16}$ m s⁻²

Answer (4)

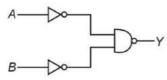
39. An electric dipole is placed as shown in the figure.

The electric potential (in 10² V) at point *P* due to the dipole is (ϵ_0 = permittivity of free space and $\frac{1}{4\pi \epsilon_0} = K$)

- (1) $\left(\frac{3}{8}\right)qK$
- (2) $\left(\frac{5}{8}\right)qK$
- (3) $\left(\frac{8}{5}\right)qK$
- (4) $\left(\frac{8}{3}\right)qK$

Answer (1)

- 40. A bullet from a gun is fired on a rectangular wooden block with velocity u. When bullet travels 24 cm through the block along its length horizontally, velocity of bullet becomes $\frac{u}{3}$. Then it further penetrates into the block in the same direction before coming to rest exactly at the other end of the block. The total length of the block is
 - (1) 27 cm
 - (2) 24 cm
 - (3) 28 cm
 - (4) 30 cm


Answer (1)

41. In the figure shown here, what is the equivalent focal length of the combination of lenses (Assume that all layers are thin)?

$$n_1 = 1.5$$
 $R_1 = R_2 = 20 \text{ cm}$
 $n_2 = 1.6$

- (1) 40 cm
- (2) -40 cm
- (3) -100 cm
- (4) -50 cm

42. For the following logic circuit, the truth table is

A B Y 0 0 1

0 0 0

(1) 0 1 1

(2) 0 1 1

1 1 0

1 0 1

1 1 0

1 1 1

ABY

ABY

0 0 1

0 0 0

(3) 0 1 0 1 0 1

(4) 0 1 0

1 1 (

1 1 1

Answer (2)

- 43. A horizontal bridge is built across a river. A student standing on the bridge throws a small ball vertically upwards with a velocity 4 m s⁻¹. The ball strikes the water surface after 4 s. The height of bridge above water surface is (Take g = 10 m s⁻²)
 - (1) 56 m
 - (2) 60 m
 - (3) 64 m
 - (4) 68 m

Answer (3)

- 44. 10 resistors, each of resistance *R* are connected in series to a battery of emf *E* and negligible internal resistance. Then those are connected in parallel to the same battery, the current is increased *n* times. The value of *n* is
 - (1) 10
 - (2) 100
 - (3) 1
 - (4) 1000

Answer (2)

- 45. A wire carrying a current I along the positive x-axis has length L. It is kept in a magnetic field $\vec{B} = (2\hat{i} + 3\hat{j} 4\hat{k}) \, T$. The magnitude of the magnetic force acting on the wire is
 - (1) 3 IL
 - (2) $\sqrt{5}IL$
 - (3) 5 IL
 - (4) $\sqrt{3}$ IL

- 46. A satellite is orbiting just above the surface of the earth with period T. If d is the density of the earth and G is the universal constant of gravitation, the quantity $\frac{3\pi}{Gd}$ represents
 - (1) T
 - (2) T^2
 - (3) T^3
 - (4) \sqrt{T}

Answer (2)

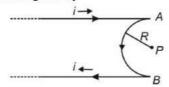
- 47. Calculate the maximum acceleration of a moving car so that a body lying on the floor of the car remains stationary. The coefficient of static friction between the body and the floor is 0.15 ($g = 10 \text{ m s}^{-2}$).
 - (1) 1.2 m s⁻²
 - (2) 150 m s⁻²
 - (3) 1.5 m s⁻²
 - (4) 50 m s⁻²

Answer (3)

- 48. The resistance of platinum wire at 0°C is 2 Ω and 6.8 Ω at 80°C. The temperature coefficient of resistance of the wire is
 - (1) 3 × 10-4 °C-1
 - (2) 3 × 10⁻³ °C⁻¹
 - (3) 3 × 10-2 °C-1
 - (4) $3 \times 10^{-1} \, ^{\circ}\text{C}^{-1}$

Answer (3)

- 49. The radius of inner most orbit of hydrogen atom is 5.3×10^{-11} m. What is the radius of third allowed orbit of hydrogen atom?
 - (1) 0.53 Å


(2) 1.06 Å

(3) 1.59 Å

(4) 4.77 Å

Answer (4)

50. A very long conducting wire is bent in a semi-circular shape from A to B as shown in figure. The magnetic field at point P for steady current configuration is given by

- (1) $\frac{\mu_0 i}{4R}$ pointed into the page
- (2) $\frac{\mu_0 i}{4R}$ pointed away from the page
- (3) $\frac{\mu_0 i}{4R} \left[1 \frac{2}{\pi} \right]$ pointed away from page
- (4) $\frac{\mu_0 i}{4R} \left[1 \frac{2}{\pi} \right]$ pointed into the page

CHEMISTRY

SECTION-A

51.	Which of the foll	owing reactions v	vill NOT give	primary amine	as the product?
-----	-------------------	-------------------	---------------	---------------	-----------------

(1) $CH_3CONH_2 \xrightarrow{Br_2/KOH} Product$

(2) $CH_3CN \xrightarrow{(i) LiAlH_4} Product$

(3) $CH_3NC \xrightarrow{(i) LiAlH_4} Product$

(4) $CH_3CONH_2 \xrightarrow{\text{(i) LiAlH}_4} Product$

Answer (3)

Match List-I with List-II.

List-I

List-II

A. Coke

I. Carbon atoms are sp3 hybridised

B. Diamond

II. Used as a dry lubricant

C. Fullerene

III. Used as a reducing agent

D. Graphite

IV. Cage like molecules

Choose the correct answer from the options given below:

(1) A-II, B-IV, C-I, D-III

(2) A-IV, B-I, C-II, D-III

(3) A-III, B-I, C-IV, D-II

(4) A-III, B-IV, C-I, D-II

Answer (3)

53. Given below are two statements : one is labelled as **Assertion A** and the other is labelled as **Reason R**:

Assertion A: Metallic sodium dissolves in liquid ammonia giving a deep blue solution, which is paramagnetic.

Reason R: The deep blue solution is due to the formation of amide.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true but R is NOT the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true

Answer (3)

54. In Lassaigne's extract of an organic compound, both nitrogen and sulphur are present, which gives blood red colour with Fe³⁺ due to the formation of

(1) Fe₄[Fe(CN)₆]₃-xH₂O

(2) NaSCN

(3) [Fe(CN)₅NOS]⁴-

(4) [Fe(SCN)]2+

Answer (4)

- 55. The conductivity of centimolar solution of KCl at 25°C is 0.0210 ohm⁻¹ cm⁻¹ and the resistance of the cell containing the solution at 25°C is 60 ohm. The value of cell constant is
 - (1) 1.34 cm⁻¹

(2) 3.28 cm⁻¹

(3) 1.26 cm⁻¹

(4) 3.34 cm⁻¹

Answer (3)

56. Given below are two statements : one is labelled as **Assertion A** and the other is labelled as **Reason R**:

Assertion A: A reaction can have zero activation energy.

Reasons R: The minimum extra amount of energy absorbed by reactant molecules so that their energy becomes equal to threshold value, is called activation energy.

In the light of the above statements, choose the correct answer from the options given below :

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true and R is NOT the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true

Answer (2)

- 57. Which one is an example of heterogenous catalysis?
 - (1) Oxidation of sulphur dioxide into sulphur trioxide in the presence of oxides of nitrogen
 - (2) Hydrolysis of sugar catalysed by H+ ions
 - (3) Decomposition of ozone in presence of nitrogen monoxide
 - (4) Combination between dinitrogen and dihydrogen to form ammonia in the presence of finely divided iron

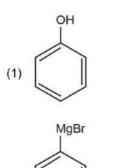
Answer (4)

58. The given compound

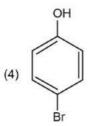
is an example of _____.

(1) Benzylic halide

(2) Aryl halide


(3) Allylic halide

(4) Vinylic halide


Answer (3)

59. Identify the product in the following reaction:

$$\begin{array}{c}
\mathring{N}_{2}\overline{C}I \\
 & (i) Cu_{2}Br_{2}/HBr \\
 & (ii) Mg/dry \text{ ether} \\
\hline
 & (iii) H_{2}O
\end{array}$$

Answer (2)

60. Given below are two statements : one is labelled as **Assertion A** and the other is labelled as **Reason R**

Assertion A: Helium is used to dilute oxygen in diving apparatus.

Reason R: Helium has high solubility in O₂.

In the light of the above statements, choose the **correct** answer from the options given below

- (1) Both A and R are true and R correct explanation of A
- (2) Both A and R are true and R is NOT the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true

Answer (2)

- 61. A compound is formed by two elements A and B. The element B forms cubic close packed structure and atoms of A occupy 1/3 of tetrahedral voids. If the formula of the compound is A_xB_y, then the value of x + y is in option
 - (1) 5

(2) 4

(3) 3

(4) 2

Answer (1)

62. Given below are two statements:

Statement I: A unit formed by the attachment of a base to 1' position of sugar is known as nucleoside.

Statement II: When nucleoside is linked to phosphorous acid at 5'-position of sugar moiety, we get nucleotide.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true
- (2) Both Statement I and Statement II are false
- (3) Statement I is true but Statement II is false
- (4) Statement I is false but Statement II is true

	(3) n	$n_{\rm m}=2P+1$	(4)	$n_m = I + 2$
	Answ	er (1)		
64.	Amon	gst the following the total number of species N	OT h	aving eight electrons around central atom in its
	outern	nost shell, is		
	NH ₃ , A	AICl ₃ , BeCl ₂ , CCl ₄ , PCl ₅ :		
	(1) 3	3	(2)	2
	(3) 4	ļ.	(4)	1
	Answ	er (1)		
65.	The c	orrect order of energies of molecular orbitals of	N ₂ n	nolecule, is
	(1) s	$1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < (\pi 2p_x = \pi 2p_y) < \sigma 2p_z < \sigma^* 2s < (\pi 2p_x = \pi 2p_y) < \sigma 2p_z < \sigma^* 2s < \sigma^*$	(π*2	$2p_x = \pi^* 2p_y) < \sigma^* 2p_z$
	(2) σ	$1s < \sigma'1s < \sigma2s < \sigma^*2s < \sigma2p_z < (\pi 2p_x = \pi 2p_y) < (\pi 2p_x = \pi 2p_y) < \sigma^*2p_z < (\pi 2p_x = \pi 2p_y) < \sigma^*2p_z < $	(π*2	$2p_x = \pi^* 2p_y) < \sigma^* 2p_z$
	(3) σ	$1s < \sigma'1s < \sigma2s < \sigma^*2s < \sigma2p_z < \sigma^*2p_z < (\pi2p_x = \sigma^*2p_z < \sigma^*2p_z < (\pi2p_x = \sigma^*2p_z < \sigma^$	= π2p	$(p_y) < (\pi^* 2p_x = \pi^* 2p_y)$
	(4) σ	$1s < \sigma^* 1s < \sigma^* 2s < \sigma^* 2s < (\pi 2p_x = \pi 2p_y) < (\pi^* 2p_x)$	= π*	$2p_y) < \sigma 2p_z < \sigma^* 2p_z$
	Answ	er (1)		
66.	The n	umber of σ bonds, π bonds and lone pair of elec	trons	s in pyridine, respectively are:
	(1) 1	11, 2, 0	(2)	12, 3, 0
	(3) 1	11, 3, 1	(4)	12, 2, 1
	Answ	er (3)		
67.	Interm	nolecular forces are forces of attraction and repu	ılsion	between interacting particles that will include :
	A. d	lipole - dipole forces		
	B. c	lipole - induced dipole forces		
	C. h	nydrogen bonding		
	D. c	covalent bonding		
	E. d	dispersion forces		
	Choos	se the most appropriate answer from the option	ns giv	ven below:
		3, C, D, E are correct		
		A, B, C, D are correct		
		A, B, C, E are correct		
		A, C, D, E are correct		
	Answer (3)			

The relation between n_m , $(n_m$ = the number of permissible values of magnetic quantum number (m)) for a

(2) $I = 2n_m + 1$

given value of azimuthal quantum number (I), is

63.

 $(1) I = \frac{n_m - 1}{2}$

68.	Which of the following statements are NOT correct?							
	A.	Hydrogen is used to reduce heavy metal oxides to metals.						
	B.	Heavy water is used to study reaction mechanism.						
	C.	Hydrogen is used to make saturated fats from o	ls.					
	D.	The H-H bond dissociation enthalpy is lowest a	s co	mpared to a single bond between two atoms of				
		any elements.						
	E.	Hydrogen reduces oxides of metals that are more	e act	tive than iron.				
	Cho	ose the most appropriate answer from the option	ns gi	ven below:				
	(1)	B, C, D, E only	(2)	B, D only				
	(3)	D, E only	(4)	A, B, C only				
	Ans	swer (3)						
69.	Whi	ch amongst the following molecules on polymeriz	ation	produces neoprene?				
				ÇI				
	(1)	$H_2C = CH - CH = CH_2$	(2)	$H_2C = C - CH = CH_2$				
				CH ₃				
	(3)	$H_2C = CH - C \equiv CH$	(4)	$H_2C = C - CH = CH_2$				
	Ans	swer (2)						
70.	Son	Some tranquilizers are listed below. Which one from the following belongs to barbiturates?						
		Chlordiazepoxide	(2)	Meprobamate				
		Valium	200000	Veronal				
		swer (4)						
71.		The element expected to form largest ion to achieve the nearest noble gas configuration is						
	(1)		(2)	200				
	(3)		(4)	Na				
	1213	swer (3)	(+)	110				
72.		62020						
12.	Select the correct statements from the following							
	A.	### ### #############################						
	B. C.	The mass of the electron is 9.10939×10^{-31} kg. All the isotopes of a given element show same of	h a mai	and managerines.				
	10256	A STATE OF THE PARTY OF T		25 (25)				
	D. E.	Protons and electrons are collectively known as nucleons.						
		Dalton's atomic theory, regarded the atom as an		late particles of matter				
		ose the correct answer from the options given be A, B and C only	1224	C. D. and E. anly				
	25000	A and E only	(2)	C, D and E only B, C and E only				
		-	(4)	B, C and E only				
	Alls	swer (4)						

73. Consider the following reaction and identify the product (P).

$$\begin{array}{c|c}
CH_3-CH-CH-CH_3 & \xrightarrow{HBr} Product (P) \\
CH_3 & OH
\end{array}$$

3-Methylbutan-2-ol

Answer (1)

- 74. The stability of Cu²⁺ is more than Cu⁺ salts in aqueous solution due to
 - (1) First ionisation enthalpy

(2) Enthalpy of atomization

(3) Hydration energy

(4) Second ionisation enthalpy

Answer (3)

- 75. Which one of the following statements is **correct**?
 - (1) The daily requirement of Mg and Ca in the human body is estimated to be 0.2-0.3 g
 - (2) All enzymes that utilise ATP in phosphate transfer require Ca as the cofactor
 - (3) The bone in human body is an inert and unchanging substance
 - (4) Mg plays roles in neuromuscular function and interneuronal transmission

Answer (1)

- 76. Weight (g) of two moles of the organic compound, which is obtained by heating sodium ethanoate with sodium hydroxide in presence of calcium oxide is:
 - (1) 16

(2) 32

(3) 30

(4) 18

Answer (2)

- 77. Amongst the given options which of the following molecules/ ion acts as a Lewis acid?
 - (1) NH₃

(2) H₂O

(3) BF₃

(4) OH-

Answer (3)

78. Identify product (A) in the following reaction:

(3)
$$CH_2$$
 CH_2OH

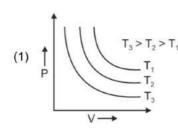
Answer (1)

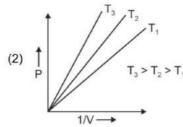
- 79. Taking stability as the factor, which one of the following represents correct relationship?
 - (1) $T\ell Cl_3 > T\ell Cl$
 - (2) Inl₃ > Inl
 - (3) AICI > AICI₃
 - (4) $T\ell I > T\ell I_3$

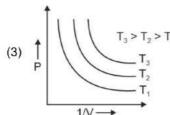
Answer (4)

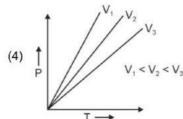
- 80. Homoleptic complex from the following complexes is
 - (1) Potassium trioxalatoaluminate (III)
 - (2) Diamminechloridonitrito-N-platinum (II)
 - (3) Pentaamminecarbonatocobalt (III) chloride
 - (4) Triamminetriaquachromium (III) chloride

Answer (1)


81. Complete the following reaction


$$\begin{array}{c|c}
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & &$$


$$\xrightarrow{\text{conc. H}_2SO_4} [C]$$


Answer (4)

82. Which amongst the following options are correct graphical representation of Boyle's law?

Answer (2)

83. The **right** option for the mass of CO₂ produced by heating 20 g of 20% pure limestone is (Atomic mass of Ca = 40) $\left[\text{CaCO}_3 \xrightarrow{1200 \, \text{K}} \text{CaO} + \text{CO}_2 \right]$

Answer (2)

84. For a certain reaction, the rate = $k[A]^2[B]$, when the initial concentration of A is tripled keeping concentration of B constant, the initial rate would

(1) Decrease by a factor of nine

(2) Increase by a factor of six

(3) Increase by a factor of nine

(4) Increase by a factor of three

Answer (3)

85. Given below are two statements: one is labelled as **Assertion A** and the other is labelled as **Reason R**

Assertion A : In equation $\Delta_r G = -nFE_{cell'}$ value of $\Delta_r G$ depends on n.

Reasons R : E_{cell} is an intensive property and $\Delta_{\text{r}}G$ is an extensive property.

In the light of the above statements, choose the correct answer from the options given below

(1) Both A and R are true and R is the correct explanation of A

(2) Both A and R are true and R is NOT the correct explanation of A

(3) A is true but R is false

(4) A is false but R is true

Answer (2)

SECTION-B

86. Match List-I with List-II:

List-I (Oxoacids of Sulphur)

List-II (Bonds)

- A. Peroxodisulphuric acid
- I. Two S-OH, Four S=O, One S-O-S

B. Sulphuric acid

- II. Two S-OH, One S=O
- C. Pyrosulphuric acid
- III. Two S-OH, Four S=O, One S-O-O-S

D. Sulphurous acid

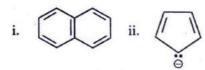
IV. Two S-OH, Two S=O

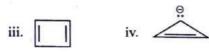
Choose the correct answer from the options given below.

- (1) A-I, B-III, C-II, D-IV
- (2) A-III, B-IV, C-I, D-II
- (3) A-I, B-III, C-IV, D-II
- (4) A-III, B-IV, C-II, D-I

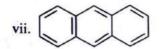
Answer (2)

- 87. Which of the following statements are INCORRECT?
 - A. All the transition metals except scandium form MO oxides which are ionic.
 - B. The highest oxidation number corresponding to the group number in transition metal oxides is attained in Sc₂O₃ to Mn₂O₇.
 - C. Basic character increases from V₂O₃ to V₂O₄ to V₂O₅.
 - D. V_2O_4 dissolves in acids to give VO_4^{3-} salts.
 - E. CrO is basic but Cr₂O₃ is amphoteric.


Choose the correct answer from the options given below:


- (1) A and E only
- (2) B and D only
- (3) C and D only
- (4) B and C only

Answer (3)


- 88. Which complex compound is most stable?
 - (1) $\left[\text{Co}(\text{NH}_3)_4 (\text{H}_2\text{O}) \text{Br} \right] (\text{NO}_3)_2$
 - (2) $\left[\text{Co}(\text{NH}_3)_3 (\text{NO}_3)_3 \right]$
 - (3) $\left[\text{CoCl}_2(\text{en})_2 \right] \text{NO}_3$
 - (4) $\left[\text{Co}(\text{NH}_3)_6 \right]_2 (\text{SO}_4)_3$

The number of compounds/species which obey Huckel's rule is _____.

(1) 4

(2) 6

(3) 2

(4) 5

Answer (1)

- 90. What fraction of one edge centred octahedral void lies in one unit cell of fcc?
 - (1) $\frac{1}{2}$

(2) $\frac{1}{3}$

(3) $\frac{1}{4}$

(4) $\frac{1}{12}$

Answer (3)

91. Which amongst the following options is the **correct** relation between change in enthalpy and change in internal energy?

(1)
$$\Delta H = \Delta U - \Delta n_g RT$$

(2)
$$\Delta H = \Delta U + \Delta n_g RT$$

(3)
$$\Delta H - \Delta U = -\Delta nRT$$

(4)
$$\Delta H + \Delta U = \Delta nR$$

Answer (2)

92. On balancing the given redox reaction,

$$aCr_{_{2}}O_{_{7}}^{2-} + bSO_{_{3}}^{2-}(aq) + cH^{+}(aq) \rightarrow 2aCr^{3+}(aq) + bSO_{_{4}}^{2-}(aq) + \frac{c}{_{2}}H_{_{2}}O(I)$$

the coefficients a, b and c are found to be, respectively-

(1) 1, 3, 8

(2) 3, 8, 1

(3) 1, 8, 3

(4) 8, 1, 3

Answer (1)

- 93. The equilibrium concentrations of the species in the reaction $A + B \rightleftharpoons C + D$ are 2, 3, 10 and 6 mol L^{-1} , respectively at 300 K. ΔG^{o} for the reaction is (R = 2 cal/mol K)
 - (1) 1372.60 cal

(2) -137.26 cal

(3) -1381.80 cal

(4) -13.73 cal

Answer (3)

- 94. Pumice stone is an example of
 - (1) Sol

(2) Gel

(3) Solid sol

(4) Foam

Answer (3)

95. Identify the major product obtained in the following reaction:

$$+2\left[Ag(NH_3)_2\right]^+ +$$

 $3^{-}OH \xrightarrow{\Delta} major product$

Answer (3)

96. Identify the final product [D] obtained in the following sequence of reactions.

$$CH_3CHO \xrightarrow{i)LiAlH_4} [A] \xrightarrow{H_2SO_4} [B]$$

$$\xrightarrow{\text{HBr}} [C] \xrightarrow{\text{Na/dry ether}} [D]$$

(3) C₄H₁₀

(4) HC ≡ C[⊖]Na

Answer (1)

97. Which amongst the following will be most readily dehydrated under acidic conditions?

(1)
$$\stackrel{NO_2}{\longleftarrow} \stackrel{OH}{\longleftarrow} CH_3$$

Answer (2)

98. Given below are two statements:

Statement I: The nutrient deficient water bodies lead to eutrophication

Statement II: Eutrophication leads to decrease in the level of oxygen in the water bodies.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true
- (2) Both Statement I and Statement II are false
- (3) Statement I is correct but Statement II is false
- (4) Statement I is incorrect but Statement II is true

Answer (4)

99. Consider the following reaction:

$$CH_2 - O \longrightarrow HI \longrightarrow A + B$$

Identify products A and B.

(1)
$$A = \bigcirc CH_3$$
 and $B = \bigcirc OH$

$$-OH$$
 (2) $A = \bigcirc -CH_2OH$ and $B = \bigcirc -I$

(4)
$$A = \bigcirc CH_3$$
 and $B = \bigcirc I$

Answer (3)

- 100. The reaction that does NOT take place in a blast furnace between 900 K to 1500 K temperature range during extraction of iron is :
 - (1) Fe₂O₃ + CO → 2FeO + CO₂
 - (2) FeO + CO \rightarrow Fe + CO₂
 - (3) $C + CO_2 \rightarrow 2CO$
 - (4) CaO + SiO₂ → CaSiO₃

Answer (1)

BOTANY

		SECI	ION	-A
101.	Giv	en below are two statements : One labelled as As	ssert	ion A and the other labelled as Reason R:
	Ass	sertion A : The first stage of gametophyte in the	ife cy	cle of moss is protonema stage.
	Rea	ason R : Protonema develops directly from spore	s pro	duced in capsule.
	In th	ne light of the above statements, choose the mos	t app	propriate answer from options given below:
	(1)	Both A and R are correct and R is the correct e	xplan	ation of A
	(2)	Both A and R are correct but R is NOT the corre	ect ex	planation of A
	(3)	A is correct but R is not correct		
	(4)	A is not correct but R is correct		
	Ans	swer (1)		
102.	In a	ngiosperm, the haploid, diploid and triploid struct	ures	of a fertilized embryo sac sequentially are :
	(1)	Synergids, Primary endosperm nucleus and zyg	gote	
	(2)	Antipodals, synergids, and primary endosperm	nucle	us
	(3)	Synergids, Zygote and Primary endosperm nuc	leus	
	(4)	Synergids, antipodals and Polar nuclei		
	Ans	swer (3)		
103.		vement and accumulation of ions across a me lained by	mbra	ne against their concentration gradient can be
	(1)	Osmosis	(2)	Facilitated Diffusion
	(3)	Passive Transport	(4)	Active Transport
	Ans	swer (4)		
104.	Lar	ge, colourful, fragrant flowers with nectar are see	n in	
	(1)	Insect pollinated plants	(2)	Bird pollinated plants
	(3)	Bat pollinated plants	(4)	Wind pollinated plants
	Ans	swer (1)		
105.	The	phenomenon of pleiotropism refers to		
	(1)	Presence of several alleles of a single gene cor	ntrolli	ng a single crossover
	(2)	Presence of two alleles, each of the two genes	contr	olling a single trait
	(3)	A single gene affecting multiple phenotypic exp	ressio	on
	(4)	More than two genes affecting a single character	er	
	Ans	swer (3)		
106.	Whi	ich hormone promotes internode/petiole elongation	on in	deep water rice?

(2) Kinetin

(4) 2, 4-D

(1) GA₃

(3) Ethylene

107.	Amo	ong 'The Evil Quartet', which one is considered the	e mo	st important cause driving extinction of species?
	(1)	Habitat loss and fragmentation		
	(2)	Over exploitation for economic gain		
	(3)	Alien species invasions		
	(4)	Co-extinctions		
	Ans	swer (1)		
108.	Upo	on exposure to UV radiation, DNA stained with eth	idiun	n bromide will show
	(1)	Bright red colour	(2)	Bright blue colour
	(3)	Bright yellow colour	(4)	Bright orange colour
	Ans	swer (4)		
109.	Whi	ch micronutrient is required for splitting of water n	nolec	ule during photosynthesis?
	(1)	Manganese	(2)	Molybdenum
	(3)	Magnesium	(4)	Copper
	Ans	swer (1)		
110.	Axile	e placentation is observed in		
	(1)	Mustard, Cucumber and Primrose		
	(2)	China rose, Beans and Lupin		
	(3)	Tomato, Dianthus and Pea		
	(4)	China rose, Petunia and Lemon		
	Ans	swer (4)		
111.	The	process of appearance of recombination nodules	occi	urs at which sub stage of prophase I in meiosis?
	(1)	Zygotene	(2)	Pachytene
	(3)	Diplotene	(4)	Diakinesis
	Ans	swer (2)		
112.	The	reaction centre in PS II has an absorption maxim	a at	
	(1)	680 nm	(2)	700 nm
	(3)	660 nm	(4)	780 nm
	Ans	wer (1)		
113.	Une	equivocal proof that DNA is the genetic material wa	as fir	st proposed by
	(1)	Frederick Griffith		
	(2)	Alfred Hershey and Martha Chase		
	(3)	Avery, Macleoid and McCarthy		
	(4)	Wilkins and Franklin		
	Ans	swer (2)		
114.	Amo	ong eukaryotes, replication of DNA takes place in	:	
			22.0	
	(1)	M phase	(2)	S phase
	(1) (3)	M phase G ₁ phase	(2) (4)	S phase G ₂ phase

- 115. In tissue culture experiments, leaf mesophyll cells are put in a culture medium to form callus. This phenomenon may be called as
 - (1) Differentiation

(2) Dedifferentiation

(3) Development

(4) Senescence

Answer (2)

- 116. Cellulose does not form blue colour with lodine because
 - (1) It is a disaccharide
 - (2) It is a helical molecule
 - (3) It does not contain complex helices and hence cannot hold iodine molecules
 - (4) It breaks down when iodine reacts with it

Answer (3)

- 117. Spraying of which of the following phytohormone on juvenile conifers helps hastening the maturity period, that leads early seed production?
 - (1) Indole-3-butyric Acid

(2) Gibberellic Acid

(3) Zeatin

(4) Abscisic Acid

Answer (2)

118. Given below are two statements:

Statement I: The forces generated transpiration can lift a xylem-sized column of water over 130 meters height.

Statement II: Transpiration cools leaf surfaces sometimes 10 to 15 degrees evaporative cooling.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect
- (3) Statement I is correct but Statement II is incorrect
- (4) Statement I is incorrect but Statement II is correct

Answer (1)

- 119. Family Fabaceae differs from Solanaceae and Liliaceae. With respect to the stamens, pick out the characteristics specific to family Fabaceae but not found in Solanaceae or Liliaceae.
 - (1) Diadelphous and Dithecous anthers
 - (2) Polyadelphous and epipetalous stamens
 - (3) Monoadelphous and Monothecous anthers
 - (4) Epiphyllous and Dithecous anthers

Answer (1)

- 120. Expressed Sequence Tags (ESTs) refers to
 - (1) All genes that are expressed as RNA.
 - (2) All genes that are expressed as proteins.
 - (3) All genes whether expressed or unexpressed.
 - (4) Certain important expressed genes.

Answer (1)

121.	Identify the correct statements:						
	A.	Detrivores perform fragmentation.					
	В.	The humus is further degraded by some microbe	es du	ring mineralization.			
	C.	Water soluble inorganic nutrients go down intleaching.	o the	e soil and get precipitated by a process called			
	D.	The detritus food chain begins with living organic	sms.				
	E.	Earthworms break down detritus into smaller pa	rticle	s by a process called catabolism.			
	Cho	ose the correct answer from the options given be	elow:				
	(1)	A, B, C onl	(2)	B, C, D only			
	(3)	C, D, E only	(4)	D, E, A only			
	Ans	swer (1)					
122.	The	thickness of ozone in a column of air in the atmo	sphe	re is measured in terms of :			
	(1)	Dobson units	(2)	Decibels			
	(3)	Decameter	(4)	Kilobase			
	Ans	swer (1)					
123.	Give	en below are two statements : One is labelled as a	Asse	rtion A and the other is labelled as Reason R :			
	Assertion A: Late wood has fewer xylary elements with narrow vessels.						
	Reason R: Cambium is less active in winters.						
	In the light of the above statements, choose the correct answer from the options given below :						
	(1)	Both A and R are true and R is the correct expla	natio	on of A			
	(2) Both A and R are true but R is NOT the correct explanation of A						
	(3) A is true but R is false						
	(4)	A is false but R is true					
	Ans	swer (1)					
124.	Whi	ch of the following stages of meiosis involves divi	sion	of centromere?			
	(1)	Metaphase I	(2)	Metaphase II			
	(3)	Anaphase II	(4)	Telophase			
	Ans	swer (3)					
125.	The	historic Convention on Biological Diversity, 'The	Earth	Summit' was held in Rio de Janeiro in the year			
	(1)	1985	(2)	1992			
	(3)	1986	(4)	2002			
	Ans	swer (2)					
126.	How	v many ATP and NADPH ₂ are required for the synt	hesis	s of one molecule of Glucose during Calvin cycle?			
	(1)	12 ATP and 12 NADPH2	(2)	18 ATP and 12 NADPH ₂			
	(3)	12 ATP and 16 NADPH ₂	(4)	18 ATP and 16 NADPH ₂			
	Ans	swer (2)					

127.	In the equation $GPP - R = NPP$				
	GPP is Gross Primary Productivity				
	NPP is Net Primary Productivity				
	R here is .				
	(1)	Photosynthetically active radiation	(2)	Respiratory quotient	
	(3)	Respiratory loss	(4)	Reproductive allocation	
	Ans	swer (3)			
128.	Dur	ing the purification process for recombinant DNA	techr	nology, addition of chilled ethanol precipitates out	
	(1)	RNA	(2)	DNA	
	(3)	Histones	(4)	Polysaccharides	
	Ans	swer (2)			
129.	Wha	at is the role of RNA polymerase III in the process	of tr	anscription in Eukaryotes?	
	(1)	Transcription of rRNAs (28S, 18S and 5.8S)			
	(2)	Transcription of tRNA, 5S rRNA and snRNA			
	(3)	Transcription of precursor of mRNA			
	(4)	Transcription of only snRNAs			
	Ans	swer (2)			
130.	Wha	at is the function of tassels in the corn cob?			
	(1)	To attract insects	(2)	To trap pollen grains	
	(3)	To disperse pollen grains	(4)	To protect seeds	
	Ans	swer (2)			
131.	Ider	ntify the pair of heterosporous pteridophytes amou	ng the	e following:	
		Lycopodium and Selaginella	(2)	Selaginella and Salvinia	
		Psilotum and Salvinia	(4)	Equisetum and Salvinia	
	Ans	swer (2)			
132.	1000000		host	cells, microparticles of metal are used.	
	A200000	Copper	(2)	Zinc	
		Tungsten or gold	(4)	Silver	
		swer (3)			
133.		en below are two statements :			
		tement I : Endarch and exarch are the terms often ne plant body.	en use	ed for describing the position of secondary xylem	
		tement II: Exarch condition is the most common			
	In th	ne light of the above statements, choose the corr	ect a	nswer from the options given below:	
	(1)	Both Statement I and Statement II are true			
	(2)	Both Statement I and Statement II are false			
	(3)	Statement I is correct but Statement II is false			
	(4)	Statement I is incorrect but Statement II is true	l.		
	Answer (4)				

134.		quency of recombination between gene pairs or ween genes to map their position on chromosome		
	(1)	Thomas Hunt Morgan	(2)	Sutton and Boveri
	(3)	Alfred Sturtevant	(4)	Henking
	Ans	swer (3)		
135.	Give	en below are two statements : One is labelled as	Asse	rtion A and the other is labelled as Reason R :
	Ass	sertion A : ATP is used at two steps in glycolysis.		
		son R : First ATP is used in converting glucose inversion of fructose-6-phosphate into fructose-1, 6-		T/ 0 A
	In th	ne light of the above statements, choose the corre	ect a	nswer from the options given below :
	(1)	Both A and R are true and R is the correct expla	natio	on of A .
	(2)	Both A and R are true but R is NOT the correct of	expla	nation of A.
	(3)	A is true but R is false.		
	(4)	A is false but R is true.		
	Ans	swer (1)		
		SECT	ION	-В
136.	Whi	ch one of the following statements is NOT correct	?	
	(1)	The micro-organisms involved in biodegradation consume a lot of oxygen causing the death of aq		2012년 1일
	(2)	Algal blooms caused by excess of organic matte	r in v	vater improve water quality and promote fisheries
	(3)	Water hyacinth grows abundantly in eutrophic wadynamics of the water body	ter b	odies and leads to an imbalance in the ecosystem
	(4)	The amount of some toxic substances of ind successive trophic levels	ustri	al waste water increases in the organisms at
	Ans	swer (2)		
137.	Hov	v many different proteins does the ribosome consi	st of	?
	(1)	80	(2)	60
	(3)	40	(4)	20
	83	swer (1)		
138.	Whi	ch of the following statements are correct about K	linef	elter's Syndrome?
	Α.	This disorder was first described by Langdon Do		CONTROL SERVICE AND LANGUAGE AND
	В.	Democratic contribution which are the contribution of the contribu	na-o o-o-o-o	nt. However, the feminine developement is also
	C.	The affected individual is short statured.		
	D.	Physical, psychomotor and mental development	is re	tarded.
	E.	Such individuals are sterile.		
	Cho	oose the correct answer from the options given be	elow:	
	(1)	A and B only	(2)	C and D only
	(3)	B and E only	(4)	A and E only
	25	swer (3)		and the second s
	an ruli vitil	•		

139. Match List I with List II:

List I

- A. Oxidative decarboxylation
- B. Glycolysis
- C. Oxidative phosphorylation
- D. Tricarboxylic acid cycle

List II

- Citrate synthase
- Pyruvate dehydrogenase
- III. Electron transport system
- IV. EMP pathway

Choose the correct answer from the options given below:

- (1) A III, B IV, C II, D I
- (2) A II, B IV, C I, D III
- (3) A-III, B-I, C-II, D-IV
- (4) A-II, B-IV, C-III, D-I

Answer (4)

140. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:

Assertion A: A flower is defined as modified shoot wherein the shoot apical meristem changes to floral meristem.

Reason R: Internode of the shoot gets condensed to produce different floral appendages laterally at successive node instead of leaves.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true but R is NOT the correct explanation of A
- (3) A is true but R is false
- (4) A is false but R is true

Answer (1)

141. Given below are two statements: One labelled as Assertion A and the other labelled as Reason R:

Assertion A: In gymnosperms the pollen grains are released from the microsporangium and carried by air currents.

Reason R: Air currents carry the pollen grains to the mouth of the archegonia where the male gametes are discharged and pollen tube is not formed.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both A and R are true and R is the correct explanation of A
- (2) Both A and R are true but R is NOT the current explanation of A
- (3) A is true but R is false
- (4) A is false but R is true

Answer (3)

142. Match List I with List II:

List I

- A. Cohesion
- B. Adhesion
- C. Surface tension
- D. Guttation

List II

- More attraction in liquid phase
- Mutual attraction among water molecules
- III. Water loss in liquid phase
- IV. Attraction towards polar surfaces

Choose the correct answer from the options given below:

- (1) A-II, B-IV, C-I, D-III
- (2) A IV, B III, C II, D I
- (3) A III, B I, C IV, D II
- (4) A II, B I, C IV, D III

Answer (1)

143.	Whi	Which of the following combinations is required for chemiosmosis?						
	(1)	, , , , , , , , , , , , , , , , , , ,						
	(2)							
	(3)							
		wer (1)						
144.		onate inhibits the growth of pathogenic bacteria	MD-STORES	2 100 (H. S. 10 10 77)				
		Succinic dehydrogenase	(2)	and the second s				
	(3)	Lipase	(4)	Dinitrogenase				
		wer (1)						
145.	125	tify the correct statements:						
	A.	Lenticels are the lens-shaped openings permi	10-10-10-10-10-10-10-10-10-10-10-10-10-1	100 100 100 100 100 100 100 100 100 100				
	В.	Bark formed early in the season is called hard						
	C. D.	Bark is a technical term that refers to all tissue Bark refers to periderm and secondary phloer		enor to vascular cambium.				
	E.	Phellogen is single-layered in thickness.	11.					
		ose the correct answer from the options given	helow	ş				
		B, C and E only	(2)					
		A, B and D only	(4)					
	100	wer (2)	8.6	,				
146.		ch List I with List II :						
		List I		List II				
	A.	M Phase	l.	Proteins are synthesized				
	В.	G ₂ Phase	II.	Inactive phase				
	C.	Quiescent stage	III.	Interval between mitosis and initiation of				
	O.	Quiescent stage		DNA replication				
	D.	G ₁ Phase	IV.	Equational division				
	Cho	ose the correct answer from the options given	below	:				
	(1)	A-III, B-II, C-IV, D-I	(2)	A-IV, B-II, C-I, D-III				
	(3)	A-IV, B-I, C-II, D-III	(4)	A-II, B-IV, C-I, D-III				
	Ans	wer (3)						
147.	Mato	ch List I with List II:						
		List I		List II				
		(Interaction)		(Species A and B)				
	A.	Mutualism	1.	+(A), 0(B)				
	B.	Commensalism	H.	-(A), 0(B)				
	C.	Amensalism	III.	+(A), -(B)				
	D.	Parasitism	IV.	+(A), +(B)				
	Cho	ose the correct answer from the options given	below	r.				
	(1)	A-IV, B-II, C-I, D-III	(2)	A-IV, B-I, C-II, D-III				
	(3)	A-IV, B-III, C-I, D-II	(4)	A-III, B-I, C-IV, D-II				
	Answer (2)							

148. Given below are two statements:

Statement I: Gause's 'Competitive Exclusion Principle' states that two closely related species competing for the same resources cannot co-exist indefinitely and competitively inferior one will be eliminated eventually.

Statement II: In general, carnivores are more adversely affected by competition than herbivores.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true.
- (2) Both Statement I and Statement II are false.
- (3) Statement I is correct Statement II is false.
- (4) Statement I is incorrect but Statement II is true.

Answer (3)

149. Match List I with List II:

	List I
List I	Licti

- A. Iron I. Synthesis of auxin
- B. Zinc II. Component of nitrate reductase
- C. Boron III. Activator of catalase
- D. Molybdenum IV. Cell elongation and differentiation

Choose the correct answer from the options given below:

- (1) A-III, B-II, C-I, D-IV
- (2) A-II, B-III, C-IV, D-I
- (3) A-III, B-I, C-IV, D-II
- (4) A-II, B-IV, C-I, D-III

Answer (3)

- 150. Main steps in the formation of Recombinant DNA are given below. Arrange these steps in a correct sequence.
 - A. Insertion of recombinant DNA into the host cell
 - B. Cutting of DNA at specific location by restriction enzyme
 - C. Isolation of desired DNA fragment
 - D. Amplification of gene of interest using PCR

Choose the correct answer from the options given below:

- (1) B, C, D, A
- (2) C, A, B, D
- (3) C, B, D, A
- (4) B, D, A, C

Answer (1)

ZOOLOGY

SECTION-A

151. Match List I with List II.

	List I		List II	
A.	Vasectomy	1.	Oral method	
В.	Coitus interruptus	11.	Barrier method	
C.	Cervical caps	III.	Surgical method	
D.	Saheli	IV.	Natural method	

Choose the correct answer from the options given below:

- (1) A-III, B-I, C-IV, D-II
- (2) A-III, B-IV, C-II, D-I
- (3) A-II, B-III, C-I, D-IV
- (4) A-IV, B-II, C-I, D-III

Answer (2)

152. Given below are two statements:

Statement I: Vas deferens receives a duct from seminal vesicle and opens into urethra as the ejaculatory duct.

Statement II: The cavity of the cervix is called cervical canal which along with vagina forms birth canal. In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true.
- (2) Both Statement I and Statement II are false.
- (3) Statement I is correct but Statement II is false.
- (4) Statement I is incorrect but Statement II is true.

Answer (1)

- 153. Which of the following statements is correct?
 - (1) Eutrophication refers to increase in domestic sewage and waste water in lakes.
 - (2) Biomagnification refers to increase in concentration of the toxicant at successive trophic levels.
 - (3) Presence of large amount of nutrients in water restricts 'Algal Bloom'
 - (4) Algal Bloom decreases fish mortality

Answer (2)

154. Which one of the following symbols represents mating between relatives in human pedigree analysis?

Answer (2)

155.	Which one of the following common sexually transmitted diseases is completely curable when detected early and treated properly?							
	(1)	Genital herpes	(2)	Gonorrhoea				
	(3)	Hepatitis-B	(4)	HIV Infection				
	Ans	swer (2)						
156.	Mat	ch List I with List II.						
		List I		List II				
	A.	Heroin	I.	Effect on cardiovascular system				
	В.	Marijuana	11.	Slow down body function				
	C.	Cocaine	III.	Painkiller				
	D.	Morphine	IV.	Interfere with transport of dopamine				
	Cho	ose the correct answer from the options given be	elow:					
	(1)	A-II, B-I, C-IV, D-III						
	(2)	A-I, B-II, C-III, D-IV						
	(3)	A-IV, B-III, C-II, D-I						
	(4)	A-III, B-IV, C-I, D-II						
	Ans	swer (1)						
157.	Match List I with List II.							
		List I (Type of Joint)		List II (Found between)				
	A.	Cartilaginous Joint	l.	Between flat skull bones				
	B.	Ball and Socket Joint	II.	Between adjacent vertebrae in vertebral column				
	C.	Fibrous Joint	III.	Between carpal and metacarpal of thumb				
	D.	Saddle Joint	IV.	Between Humerus and Pectoral girdle				
	Choose the correct answer from the options given below:							
	(1)	A-III, B-I, C-II, D-IV	(2)	A-II, B-IV, C-I, D-III				
	(3)	A-I, B-IV, C-III, D-II	(4)	A-II, B-IV, C-III, D-I				
	Ans	swer (2)						
158.	Give	en below are two statements:						
		tement I: A protein is imagined as a line, the left right end represented by last amino acid (N-termi		represented by first amino acid (C-terminal) and				
		tement II: Adult human haemoglobin, consists of type.)	4 su	bunits (two subunits of α type and two subunits				
	In the light of the above statements, choose the correct answer from the options given below:							
	(1) Both Statement I and Statement II are true							

(2) Both Statement I and Statement II are false.
(3) Statement I is true but Statement II is false.
(4) Statement I is false but Statement II is true.

Answer (4)

- 159. Which of the following are NOT considered as the part of endomembrane system?A. MitochondriaB. Endoplasmic reticulum
 - C. Chloroplasts
 - D. Golgi complex
 - E. Peroxisomes

Choose the most appropriate answer from the options given below:

(1) B and D only

(2) A, C and E only

(3) A and D only

(4) A, D and E only

Answer (2)

160. Given below are two statements:

Statement I: RNA mutates at a faster rate.

Statement II: Viruses having RNA genome and shorter life span mutate and evolve faster.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true.
- (2) Both Statement I and Statement II are false.
- (3) Statement I is true but Statement II is false.
- (4) Statement I is false but Statement II is true.

Answer (1)

161. Match List I with List II.

	List I		List II
A.	CCK	1.	Kidney
В.	GIP	11.	Heart
C.	ANF	Ш.	Gastric gland
D.	ADH	IV.	Pancreas

Choose the **correct** answer from the options given below:

- (1) A-IV, B-III, C-II, D-I
- (2) A-III, B-II, C-IV, D-I
- (3) A-II, B-IV, C-I, D-III
- (4) A-IV, B-II, C-III, D-I

Answer (1)

162. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Endometrium is necessary for implantation of blastocyst.

Reason R: In the absence of fertilization, the corpus luteum degenerates that causes disintegration of endometrium.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both A and R are true and R is the correct explanation of A.
- (2) Both A and R are true but R is NOT the correct explanation of A.
- (3) A is true but R is false.
- (4) A is false but R is true.

Answer (2)

163. Match List I with List II.

List I List II

A. Ringworm I. Haemophilus influenzae

B. Filariasis II. Trichophyton

C. Malaria III. Wuchereria bancrofti
 D. Pneumonia IV. Plasmodium vivax

Choose the **correct** answer from the options given below:

- (1) A-II, B-III, C-IV, D-I
- (2) A-II, B-III, C-I, D-IV
- (3) A-III, B-II, C-I, D-IV
- (4) A-III, B-II, C-IV, D-I

Answer (1)

164 Given below are two statements :

Statement I: Low temperature preserves the enzyme in a temporarily inactive state whereas high temperature destroys enzymatic activity because proteins are denatured by heat.

Statement II: When the inhibitor closely resembles the substrate in its molecular structure and inhibits the activity of the enzyme, it is known as competitive inhibitor.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true.
- (2) Both Statement I and Statement II are false.
- (3) Statement I is true but Statement II is false.
- (4) Statement I is false but Statement II is true.

Answer (1)

165. Match List I with List II.

List I List II

A. Taenia I. Nephridia

B. Paramoecium II. Contractile vacuole

C. PeriplanetaD. PheretimaIII. Flame cellsIV. Urecose gland

Choose the correct answer from the options given below:

- (1) A-I, B-II, C-III, D-IV
- (2) A-I, B-II, C-IV, D-III
- (3) A-III, B-II, C-IV, D-I
- (4) A-II, B-I, C-IV, D-III

Answer (3)

- 166. Which one of the following techniques does not serve the purpose of early diagnosis of a disease for its early treatment?
 - (1) Recombinant DNA Technology
 - (2) Serum and Urine analysis
 - (3) Polymerase Chain Reaction (PCR) technique
 - (4) Enzyme Linked Immuno-Sorbent Assay (ELISA) technique

Answer (2)

167. Match List I with List II.

List I List II

(Interacting species)

(Name of interaction)

- A. A Leopard and a Lion in a forest/grassland
- B. A Cuckoo laying egg in a Crow's nest
- C. Fungi and root of a higher plant in Mycorrhizae III. Mutualism
- D. A cattle egret and a Cattle in a field
- IV. Commensalism

Competition

II. Brood parasitism

1.

Choose the correct answer from the options given below.

- (1) A-I, B-II, C-III, D-IV
- (2) A-I, B-II, C-IV, D-III
- (3) A-III, B-IV, C-I, D-II
- (4) A-II, B-III, C-I, D-IV

Answer (1)

168 Given below are two statements:

Statement I: Ligaments are dense irregular tissue.

Statement II: Cartilage is dense regular tissue.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true
- (2) Both Statement I and Statement II are false
- (3) Statement I is true but Statement II is false
- (4) Statement I is false but Statement II is true

Answer (2)

169. Given below are two statements:

Statement I: In prokaryotes, the positively charged DNA is held with some negatively charged proteins in a region called nucleoid.

Statement II: In eukaryotes, the negatively charged DNA is wrapped around the positively charged histone octamer to form nucleosome.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true.
- (2) Both Statement I and Statement II are false.
- (3) Statement I is correct but Statement II is false.
- (4) Statement I is incorrect but Statement II is true.

Answer (4)

I ict I

170. Match List I with List II with respect to human eye.

	LISTI		LIST II
A.	Fovea	1.	Visible coloured portion of eye that regulates
			diameter of pupil.

I ict II

- B. Iris

 II. External layer of eye formed of dense connective tissue.
- C. Blind spot III. Point of greatest visual acuity or resolution.
- Sclera
 IV. Point where optic nerve leaves the eyeball and photoreceptor cells are absent.

Choose the correct answer from the options given below:

- (1) A-III, B-I, C-IV, D-II
- (2) A-IV, B-III, C-II, D-I
- (3) A-I, B-IV, C-III, D-II
- (4) A-II, B-I, C-III, D-IV

Answer (1)

171.	1. Select the correct group/set of Australian Marsupials exhibiting adaptive radiation.			
	(1) Tasmanian wolf, Bobcat, Marsu	pial mole	(2)	Numbat, Spotted cuscus, Flying phalanger
	(3) Mole, Flying squirrel, Tasmanian	n tiger cat	(4)	Lemur, Anteater, Wolf
	Answer (2)			
172.	Which of the following statements are	e correct rega	rding fe	male reproductive cycle?
	A. In non-primate mammals cyclica	al changes dur	ing rep	roduction are called oestrus cycle.
	B. First menstrual cycle begins at p	ouberty and is	called	menopause.
	C. Lack of menstruation may be inc	dicative of pre	gnancy	
	D. Cyclic menstruation extends bel	tween menarc	he and	menopause.
	Choose the most appropriate answ	er from the op	tions gi	iven below.
	(1) A and D only		(2)	A and B only
	(3) A, B and C only		(4)	A, C and D only
	Answer (4)			
173.	Vital capacity of lung is			
	(1) IRV + ERV		(2)	IRV + ERV + TV + RV
	(3) IRV + ERV + TV – RV		(4)	IRV + ERV + TV
171	Answer (4)			
174.	Match List I with List II.	List II		
	List I A. P-wave	I. Beginni	na of s	vstole
	B. Q-wave		5	of ventricles
	C. QRS complex	III. Depola		
	D. T-wave	IV. Depola	risation	of ventricles
	Choose the correct answer from the	e options give	n belov	v :
	(1) A-III, B-I, C-IV, D-II		(2)	A-IV, B-III, C-II, D-I
	(3) A-II, B-IV, C-I, D-III		(4)	A-I, B-II, C-III, D-IV
	Answer (1)			
175.	Given below are two statements: one	e is labelled as	Asser	tion A and other is labelled as Reason R.
	Assertion A : Amniocentesis for sex Care Programme.	determination	is one	of the strategies of Reprod <mark>ucti</mark> ve and Child Health
	Reason R : Ban on amniocentesis c	hecks increasi	ing mer	nace of female foeticide.
	In the light of the above statements,	choose the co	rrect a	nswer from the options given below.
	(1) Both A and R are true and R is	the correct exp	olanatio	on of A .
	(2) Both A and R are true and R is	NOT the corre	ct expl	anation of A .
	(3) A is true but R is false.			
	(4) A is false but R is true.			
	Answer (4)			

176.	Once the undigested and unabsorbed substances enter the caecum, their backflow is prevented by				
		Sphincter of Oddi			lleo-caecal valve
	NEWSCHOOL	Gastro-oesophageal sphincter		7/10/09	Pyloric sphincter
		swer (2)		3 .	Gen
177.		ch List I with List II.			
1817 505		List I			List II
	A.	Gene 'a'		1.	β-galactosidase
	В.	Gene 'y'		II.	Transacetylase
	C.	Gene 'i'		III.	Permease
	D.	Gene 'z'		IV.	Repressor protein
	Cho	oose the correct answer from the options give	en be	elow:	
	(1)	A-II, B-I, C-IV, D-III			
	(2)	A-II, B-III, C-IV, D-I			
	(3)	A-III, B-IV, C-I, D-II			
	(4)	A-III, B-I, C-IV, D-II			
	Ans	swer (2)			
178.	Mat	ch List I with List II			
		List I	Lis	t II	
		(Cells)	(Se	creti	on)
	A.	Peptic cells	1.	Mu	cus
	B.	Goblet cells	II.	Bile	juice
	C.	Oxyntic cells	III.	Pro	enzyme pepsinogen
	D.	Hepatic cells	IV.	HC	and intrinsic factor for absorption of vitamin B ₁₂
	Cho	oose the correct answer from the options give	en be	elow:	
	(1)	A-IV, B-III, C-II, D-I		(2)	A-II, B-I, C-III, D-IV
	(3)	A-III, B-I, C-IV, D-II		(4)	A-II, B-IV, C-I, D-III
	Ans	swer (3)			
179.	Whi	ch of the following functions is carried out by	cyto	skele	eton in a cell?
	(1)	Nuclear division		(2)	Protein synthesis
	(3)	Motility		(4)	Transportation
	Ans	swer (3)			
180.	Give	en below are two statements: one is labelled	as A	sser	tion A and the other is labelled as Reason R.
		sertion A: Nephrons are of two types: Cortical medulla.	& Ju	ıxta n	nedullary, based on their relative position in cortex
		son R: Juxta medullary nephrons have short lenie.	loop	of H	enle whereas, cortical nephrons have longer loop
	In th	ne light of the above statements, choose the	corre	ect a	nswer from the options given below:
	(1)	Both A and R are true and R is the correct e	xpla	natio	n of A .
	(2)	Both A and R are true but R is NOT the corr	ect e	elnve	nation of A

(3) A is true but R is false.(4) A is false but R is true.

181	Given below a	are two statements:						
	Statement I:	Statement I: Electrostatic precipitator is most widely used in thermal power plant						
	Statement II:	Electrostatic precip	oitator in thermal power p	lant removes ionising radiations				
	In the light of the above statements, choose the <i>most appropriate</i> answer from the options given below:							
	(1) Both Sta	(1) Both Statement I and Statement II are correct.						
	(2) Both Sta	tement I and State	ment II are incorrect.					
	(3) Stateme	nt I is correct but S	tatement II is incorrect.					
	(4) Stateme	nt I is incorrect but	Statement II is correct.					
	Answer (3)							
182	Broad palm w	ith single palm crea	ase is visible in a person :	suffering from-				
	(1) Down's s	yndrome	(2)	Turner's syndrome				
	(3) Klinefelte	r's syndrome	(4)	Thalassemia				
	Answer (1)							
183	Radial symme	etry is NOT found in	adults of phylum	<u>.</u>				
	(1) Ctenopho	ora	(2)	Hemichordata				
	(3) Coelente	rata	(4)	Echinodermata				
	Answer (2)							
184	In which blood	In which blood corpuscles, the HIV undergoes replication and produces progeny viruses?						
	(1) T _H cells		(2)	B-lymphocytes				
	(3) Basophil	S	(4)	Eosinophils				
	Answer (1)							
185	Which of the f	ollowing is not a clo	oning vector?					
	(1) BAC		(2)	YAC				
	(3) pBR322		(4)	Probe				
	Answer (4)							
			SECTION	I-B				
186	Match List I w	ith Liet II						
100	List I	nui List II.	List II					
	A. Logistic gro	owth		rce availability condition				
	B. Exponentia			e availability condition				
	C. Expanding	~		viduals of pre-reproductive age is largest follow	ed			
	o. Expanding	ago pyrania	10	and post reproductive age groups	,,,,			
	D. Stable age	pyramid	IV. The percent indi	viduals of pre-reproductives and reproductive a	ge			
			group are same					
	Choose the co	orrect answer from	the options given below:					
	(1) A-II, B-I,	C-III, D-IV						
	(2) A-II, B-III							
	(3) A-II, B-IV							
	(4) A-II, B-IV	, C-III, D-I						
	Answer (1)							

- 187. Select the correct statements with reference to chordates.
 - Presence of a mid-dorsal, solid and double nerve cord.
 - B. Presence of closed circulatory system.
 - C. Presence of paired pharyngeal gill slits.
 - D. Presence of dorsal heart
 - E. Triploblastic pseudocoelomate animals.

Choose the correct answer from the options given below:

- (1) A, C and D only
- (2) B and C only
- (3) B, D and E only
- (4) C, D and E only

Answer (2)

- 188. The parts of human brain that helps in regulation of sexual behaviour, expression of excitement, pleasure, rage, fear etc. are:
 - (1) Limbic system and hypothalamus
 - (2) Corpora quadrigemina and hippocampus
 - (3) Brain stem and epithalamus
 - (4) Corpus callosum and thalamus

Answer (1)

- 189. The unique mammalian characteristics are:
 - (1) hairs, tympanic membrane and mammary glands
 - (2) hairs, pinna and mammary glands
 - (3) hairs, pinna and indirect development
 - (4) pinna, monocondylic skull and mammary glands

Answer (2)

- 190. Which of the following are NOT under the control of thyroid hormone?
 - A. Maintenance of water and electrolyte balance
 - B. Regulation of basal metabolic rate
 - C. Normal rhythm of sleep-wake cycle
 - D. Development of immune system
 - E. Support the process of RBCs formation

Choose the correct answer from the options given below:

- (1) A and D only
- (2) B and C only
- (3) C and D only
- (4) D and E only

- 191. Select the correct statements.
 - Tetrad formation is seen during Leptotene.
 - B. During Anaphase, the centromeres split and chromatids separate.
 - C. Terminalization takes place during Pachytene.
 - D. Nucleolus, Golgi complex and ER are reformed during Telophase.
 - E. Crossing over takes place between sister chromatids of homologous chromosome.

Choose the correct answer from the options given below:

- (1) A and C only
- (2) B and D only
- (3) A, C and E only
- (4) B and E only

Answer (2)

192. Match List I with List II.

	List I	List	List II			
A.	Mast cells	1.	Ciliated epithelium			
В.	Inner surface of bronchiole	II.	Areolar connective tissue			
C.	Blood	III.	Cuboidal epithelium			
D.	Tubular parts of nephron	IV.	Specialised connective tissue			
O.		22012/2012/2012				

- Choose the **correct** answer from the options give below:
- (1) A-I, B-II, C-IV, D-III
- (2) A-II, B-III, C-I, D-IV
- (3) A-II, B-I, C-IV, D-III
- (4) A-III, B-IV, C-II, D-I

Answer (3)

- 193. Which of the following is characteristic feature of cockroach regarding sexual dimorphism?
 - (1) Dark brown body colour and anal cerci
 - (2) Presence of anal styles
 - (3) Presence of sclerites
 - (4) Presence of anal cerci

Answer (2)

- - (1) 5' UAGCUAGCUAGCUAGCUAGCUAGC 3'
 - (2) 3' UAGCUAGCUAGCUAGCUAGCUAGC 5'
 - (3) 5' ATCGATCGATCGATCGATCGATCG 3'
 - (4) 3' ATCGATCGATCGATCGATCGATCG 5'

- 195. In cockroach, excretion is brought about by-
 - A. Phallic gland
 - B. Urecose gland
 - C. Nephrocytes
 - D. Fat body
 - E. Collaterial glands

Choose the correct answer from the options given below:

- (1) A and E only
- (2) A, B and E only
- (3) B, C and D only
- (4) B and D only

Answer (3)

196. Given below are two statements:

Statement I: During Go phase of cell cycle, the cell is metabolically inactive.

Statement II: The centrosome undergoes duplication during S phase of interphase.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is correct but Statement II is incorrect.
- (4) Statement I is incorrect but Statement II is correct.

Answer (4)

- 197. Which one of the following is NOT an advantage of inbreeding?
 - (1) It decreases homozygosity.
 - (2) It exposes harmful recessive genes but are eliminated by selection.
 - (3) Elimination of less desirable genes and accumulation of superior genes takes place due to it.
 - (4) It decreases the productivity of inbred population, after continuous inbreeding.

Answer (4)

- 198. Which of the following statements are correct?
 - An excessive loss of body fluid from the body switches off osmoreceptors.
 - B. ADH facilitates water reabsorption to prevent diuresis.
 - C. ANF causes vasodilation.
 - D. ADH causes increase in blood pressure.
 - E. ADH is responsible for decrease in GFR.

Choose the correct answer from the options given below:

- (1) A and B only
- (2) B, C and D only
- (3) A, B and E only
- (4) C, D and E only

Answer (2)

199.	Which of the following statements are correct regarding skeletal muscle?				
	A.	Muscle bundles are held together by collagenous connective tissue layer called fascicle.			
	B.	Sarcoplasmic reticulum of muscle fibre is a store house of calcium ions.			
	C.	Striated appearance of skeletal muscle fibre is due to distribution pattern of actin and myosin proteins.			
	D.	M line is considered as functional unit of contraction called sarcomere.			
	Cho	ose the most appropriate answer from the options given below:			
	(1)	A, B and C only			
	(2)	B and C only			
	(3)	A, C and D only			
	(4)	C and D only			
	Ans	wer (2)			
200.	Whi	ch of the following statements are correct?			
	A. B. C. D.	Basophils are most abundant cells of the total WBCs Basophils secrete histamine, serotonin and heparin Basophils are involved in inflammatory response Basophils have kidney shaped nucleus Basophils are agranulocytes			
	Cho	ose the correct answer from the options given below:			
	(1)	D and E only			
	(2)	C and E only			
	03 - 50	B and C only			
	E 10	A and B only			
	Alla	wer (3)			
