

click to campus

LPUNEST BTech 2024 Previous Year Paper

LPU National Entrance and Scholarship Test (LPUNEST)

Download more LPUNEST Previous Year Question Papers: Click Here

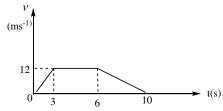
Previous Year Question Paper of LPUNEST (B.Tech)

Question paper contains five subjects i.e. Physics (30 Questions), Maths (30 Questions), Chemistry (30 Questions), Biology (30 Questions) and English (30 Questions). English, Physics & Chemistry are mandatory subjects and student has to opt one subject out of Mathematics and Biology.

Section – ENGLISH

This section contains **30 Multiple Choice Questions**. Each question has four choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

	answer choice that rents tried living in			ne sentence. d not adapt to the cold.	
a) north	b) but		not	d) adapt	
	ne missing pronoun dren are coming ou b) her		n a minute. d) they	I need to go and pick	_ up.
She is a a Beauti	e correct order of a supermo iful slim Brazilian Brazilian beautiful	odel.	Brazilian be	eautiful slim	
4. Which kin "Mothers a) Adver	nd of adverb is the stock GENTLY at the of Manner both of Place	word in capi their babies b)	tals? ."	Cime/Frequency	
When Po	e right option to fil poja arrives, I be sleeping deping	in m b)	Won't be sl		leeping
Nahal a) will co	e right option to fil his PhD o ompleting ave completed	n trauma stu b)	will have be	ember this year. een completing een completed	
Jean Mar a) Will v	e right option to fil rtin Charcot work d have worked	for u	Shall work	ork and Shall work	
a) I thinkb) I thinkc) I think	e correct one. k he would not com k he might not com k he shall not come k he might not cam	e with us to the with us to the	the meeting he meeting		


9. (Choose the correct use of a) I will make dinner to b) I will be making din c) Both I will make din d) None of these	onight nner tonight	d I will be mak	ing dinner tonig	ght	
10.	The sentence below con I am finding it difficult a) I did found it difficult c) And my pair of gree	t to choose am		red trousers and	l my pair of green one	•
11.	Identify which part of the Following intense debanest four years.(3)/ No	ate (1)/, the factor (4)	culty has approv		to increase (2)/ class	size by 15% over the
12.	a) 1 b) 2 Pick the right meaning To die in harness	for the follow		d) 4		
	a) Die earlyc) To die while in duty	·	fter doing work d) Die peaceful			
13.	Identify the correct med That ship has sailed. a) Work better or leave c) Work quickly	e	iom. b) It's too late d) Go through s	comething diffic	cult	
14.	Choose one word for the A mild or indirect expra a) Wriggle b)	_	uted for an offer c) Euph		ne d) Linguist	
15.	In the following questic Choose the pair that be earth is to ball as panca	est expresses a		•	•	ords or phrases.
	•	flag	c) disc		d) flat	
16.	Choose the correct form I think I a ne	ew cellphone.	This one does n	ot function proj	perly any more.	
	a) needs b)	needed	c) need	d) am	needing	
17.	Choose the correct form At a school dance: Mohul: " yoursel: Zoya: "Yes, I'm having a) You enjoying b)	f?" g a fun time!"				
18.	Choose the correct form During the two years R a) has has b)			nt jobs.	d) have has	
19.	Fill in the blank with co	orrect word.				

	They went to the sh	nopping center _	sho	ps were closed.	
	a) because b) or	c) but	d) so		
20.	Choose the most su	•	-	e sentence.	
	a) Oops!	•	c) Phew!	d) Ah!	
21.	Fill in the blank wit	th correct word.			
	Nisha is pleased	her i	result.		
	a) about		c) with	d) all of these	
22.	Fill in the right verb	o form.			
	The horse was	by the yo	oung boy.		
	a) ride	b) rode	c) ridden	d) riding	
23.	Change the voice of	•	ence.		
	They speak French				
	a) French is spokenc) French has spoken	at this shop en at this shop	b) French were	nch was spoken at this spoken at this shop	s shop
24.	Which of these wor	ds is most nearly	y the opposite of	the word provided?	
	a) group	b) peak c) selec	ct d) mar	ry	
25.	Which of these wor Banish	ds is closest in n	neaning to the w	ord provided?	
		b) hate	c) fade	d) clean	
26.	Choose the right op				
	Mrs Adams was				
	a) has	b) had	c) have d) have	ing	
27.	Choose the right op	_	•		
				ise I the boo	k.
	a) Had understood,c) Had read, understood		b) Read, had u d) Understood,		
28.	Choose the right op	otion to fill the ga	ap.		
	The film wasn't ver	y good. I	it very	much.	
	a) enjoyed	b) wasn't enjoy	c) didn't enjoye	ed d) didn't enj	oy
29.	Select the answer cl	hoice that identif	fies the noun in t	the sentence.	
	Susan was exceeding				
	a) exceedingly	b) home	c) prou	ıd d) b	eautiful
30.	Choose the right op	-	-	al · · ·	0
			actory, Will	the new project	(
	a) Jane and Luke dib) Jane and Luke be				
	c) Jane and Luke be				
	d) Both Jane and L	uke discuss & Ja	ne and Luke be	discussing	

Section – PHYSICS

This section contains 30 Multiple Choice Questions. Each question has four choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

31. A lift is moving in upward direction. The total mass of the lift and the passengers is 1600kg. The variation of the velocity of the lift is as shown in the figure. The tension in the rope at $t=8^{th}$ second will be

- a) 11200N
- b) 16000N
- c) 4800N
- b) 12000N

32. A mass m moves with a velocity ν and collides in elastically with another identical mass. After collision, the first mass moves with velocity $\frac{v}{\sqrt{3}}$ in a direction perpendicular to the initial direction of motion. Find the speed of 2nd mass after collision.

- b) $\frac{v}{\sqrt{3}}$
- c) v d) $\sqrt{3}v$

33. In a system of particles 8kg mass is subjected to a force of 16N along positive y axis and another 8kg mass is subjected to a force of 8N along positive x axis. The angle made by the acceleration of centre of mass with x axis is

a)
$$\theta = 45^{\circ}$$

b)
$$\theta = \tan^{-1} \left(\frac{2}{3} \right)$$
 c) $\theta = \tan^{-1} \left(2 \right)$ d) $\theta = \tan^{-1} \left(\sqrt{3} \right)$

c)
$$\theta = \tan^{-1}(2)$$

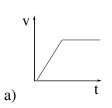
d)
$$\theta = \tan^{-1}\left(\sqrt{3}\right)$$

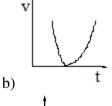
34. Four spheres of diameter 2a and mass M are placed with their centers on the four corners of a square of side 'b'. Then the moment of inertia of the system about an axis along one of the sides of the square is

a)
$$\frac{4}{5}Ma^2 + 2Mb^2$$

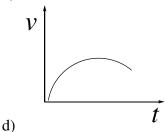
b)
$$\frac{8}{5}Ma^2 + 2Mb^2$$

c)
$$\frac{8}{5}Ma^2$$


a)
$$\frac{4}{5}Ma^2 + 2Mb^2$$
 b) $\frac{8}{5}Ma^2 + 2Mb^2$ c) $\frac{8}{5}Ma^2$ d) $\frac{4}{5}Ma^2 + 4Mb^2$


35. The time dependence of a physical quantity P is given by $P = P_o e^{-\alpha t^2}$, where α is a constant and t is a time then constant α is

- a) dimension less
- b) dimension of t⁻²
- c) dimensions of P d) dimension of t²


36. Acceleration verses velocity graph of a particle moving in a straight line as shown in graph. The corresponding velocity-time graph would be.

- c)
- **37.** A man wishes to cross the river flowing with velocity u swims at angle θ with river flow if the man swims with speed v and if the width of the river is d then drift travelled by him.

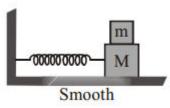
a)
$$\left[u + v\cos\theta\right] \frac{d}{v\sin\theta}$$

b)
$$\left[u - v\cos\theta\right] \frac{d}{v\sin\theta}$$

c)
$$\left[u - v\cos\theta\right] \frac{d}{v\cos\theta}$$

d)
$$\left[u + v\cos\theta\right] \frac{d}{v\cos\theta}$$

38. If the gravitational acceleration at surface of Earth is g, then increase in potential energy in lifting an object of mass m to a height equal to half of radius of earth from surface will be :-

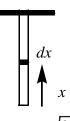

a)
$$\frac{\text{mgR}}{2}$$

b)
$$\frac{2mgR}{3}$$

c)
$$\frac{\text{mgR}}{4}$$

d)
$$\frac{\text{mgR}}{3}$$

39. In the arrangement, spring constant k has value $2Nm^{-1}$, mass M = 3 kg and mass m = 1 kg. Mass M is in contact with a smooth surface. The coefficient of friction between two blocks is 0.1 and amplitude of oscillation is 10 cm. The time period of SHM executed by the system is


a)
$$\pi\sqrt{6}$$

b)
$$\pi\sqrt{2}$$

c)
$$2\sqrt{2}\pi$$

d)
$$2\pi$$

40. A wire of variable mass per unit length is $\mu = \mu_0 x$, hanging from the ceiling as shown in figure. The length of wire is l_0 . A small transverse disturbance is produced at its lower end. Find the time after which the disturbance will reach to the other ends.

a) $\sqrt{\frac{6l_0}{g}}$

b) $\sqrt{\frac{8l_0}{g}}$

c) $\sqrt{\frac{9l_0}{g}}$

d) $\sqrt{\frac{10l_0}{g}}$

41. A cubical ball is taken to a depth of 200m in a sea. The decrease in volume observed to be 0.1%. The bulk modulus of the ball is

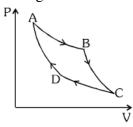
 $(g = 10 \text{ ms}^{-2})$

a) $2 \times 10^7 \text{ Pa}$

b) $2 \times 10^6 \text{ Pa}$ c) $2 \times 10^9 \text{ Pa}$

d) 1.2×10^9 Pa

42. The temperature of a body falls from 62°C to 50°C in 10 minutes. If the temperature of the surroundings is 26°C, the temperature in next 10 minutes will become


a) 42°C

b) 40°C

c) 56°C

d) 55°C

43. In the indicator diagram fig. shown of Carnot cycle T_a, T_b, T_c, T_d represent temperature of gas at A, B, C, D respectively. Which of the following is correct relation

a) $T_a = T_b = T_c = T_d$

b) $T_a = T_c$, $T_b = T_d$

c) $T_a = T_d$, $T_c = T_b$

d) $T_a = T_b$, $T_c = T_d$

44. Modern vacuum pumps can evacuate a vessel down to a pressure of 4.0×10^{-15} atm. At room temperature (300K) taking R = 8.3 JK⁻¹ mole⁻¹ and N_{avagardro} = 6×10^{23} mole⁻¹, the mean distance between molecules of gas in an evacuated vessel will be of the order of :

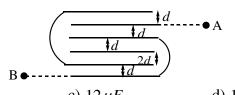
a) $0.2\mu m$

b) 0.2mm

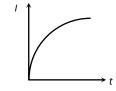
c) 0.2cm

d) 0.2nm

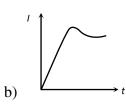
45. Three concentric conducting spherical shells carry charges +4Q on the inner shell -2Q on the middle shell and +6Q on the outer shell. The charge on the inner surface of the outer shell is

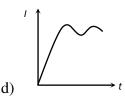

a) 0

b) 4Q


c) -Q

d) -20


46. Find equivalent capacitance between points A and B. [Assume each conducting plate is having same dimensions and neglect the thickness of the plate, $\frac{\mathcal{E}_0 A}{d} = 7 \mu F$, where A is area of plates]

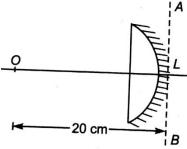


- a) $7\mu F$
- b) $11 \mu F$
- c) $12\mu F$
- d) $15\mu F$
- **47.** When an electric heater is switched on, the current flowing through it (i) is plotted against time (t). Taking into account the variation of resistance with temperature, which of the following best represents the resulting curve

a)

- **48.** A wire of mass 100g is carrying a current of 2A towards increasing x in the form of $y = x^2(-2m \le x \le +2m)$. This wire is placed in a magnetic field $\vec{B} = -0.02\hat{k}$ tesla. The acceleration of the wire (in m/s^2) is
- a) $-1.6 \hat{i}$
- b) $-3.2 \hat{i}$
- c) $1.6\,\hat{i}$
- d) zero
- 49. The real angle of dip at a place, if a magnet is suspended at an angle of 30° to the magnetic meridian and the dip needle makes an angle of 45° with horizontal is
- a) $\operatorname{Tan}^{-1}\left(\frac{\sqrt{3}}{2}\right)$ b) $\operatorname{Tan}^{-1}\left(\sqrt{3}\right)$ c) $\operatorname{Tan}^{-1}\left(\sqrt{\frac{3}{2}}\right)$ d) $\operatorname{Tan}^{-1}\left(\frac{2}{\sqrt{3}}\right)$

- **50.** In a hypothetical Bohr's hydrogen atom the mass of the electrons is doubled. The energy E_0 and radius r_0 of the first orbit will be (a_0 is the Bohr radius for the first orbit):
- a) $E_0 = -27.2 eV, r_0 = a_0$

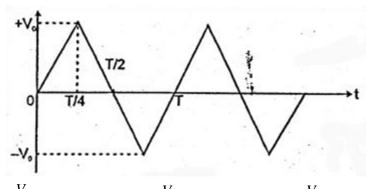

b) $E_0 = -13.6 eV$, $r_0 = a_0 / 2$

c) $E_0 = -27.3 eV$, $r_0 = a_0 / 2$

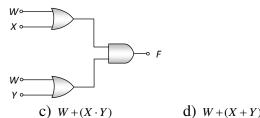
- d) $E_0 = -13.6 eV$, $r_0 = a_0$
- **51.** A radioactive isotope is being produced at a constant rate X. Half-life of the radioactive substance is Y. After some time the number of radioactive nuclei become constant. The value of this constant is:

- b) *XY*
- c) $(XY) \ln (2)$
- d) $\frac{X}{V}$
- **52.** Two identical particles move at right angles to each other, possessing debroglie wavelength λ_1 and λ_2 . The Debroglie wavelength of each of the particles in their centre of mass frame will be

53. A point object is placed at a distance of 20 cm from a thin plano-convex lens of focal length 15 cm (μ =1.5). The curved surface is silvered. The image will form at

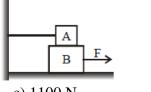


a) 60 cm left of AB


b) 30 cm left of AB

c) 20/7 cm left on AB

- d) 60 cm right of AB
- 54. In Young's double slit experiment, the two slits acts as coherent sources of equal amplitude A and wavelength λ . In another experiment with the same set up the two slits are sources of equal amplitude A and wavelength λ but are incoherent. The ratio of the intensity of light at the mid-point of the screen in the first case to that in the second case is
- a) 4:1
- b) 1:1
- c) 2:1
- d) 1:4
- **55.** The voltage time graph of a triangular wave having peak value V_0 is as shown in figure. The rms value of V in time interval from t=0 to $\frac{T}{A}$ is



- **56.** A potential difference of 2V is applied between the opposite faces of a Ge crystal plate of area $1 cm^2$ and thickness 0.5 mm. If the concentration of electrons in Ge is $2 \times 10^{19}/m^3$ and mobilities of electrons and holes are $0.36 \frac{m^2}{volt-sec}$ and $0.14 \frac{m^2}{volt-sec}$ respectively, then the current flowing through the plate will be
- a) 0.25 A
- b) 0.45 A
- c) 0.56 A
- d) 0.64 A
- **57.** The diagram of a logic circuit is given below. The output F of the circuit is represented by

- a) W.(X+Y)
- b) $W \cdot (X \cdot Y)$

- d) W+(X+Y)
- 58. A block A of mass 100 kg rests on another block B of mass 200 kg and is tied to a wall as shown in the figure. The coefficient of friction between A and B is 0.2 and that between B and the ground is 0.3. The minimum force F required to move the block B is $(g = 10 \text{ m/s}^2)$

- a) 900 N
- b) 200 N
- c) 1100 N
- d) 700 N
- **59.** A fully charged capacitor C with initial charge q_0 is connected to a coil of self-inductance L at t = 0. The time at which the energy is stored equally in the form of electric filed in capacitor and the magnetic field in the inductor
- a) $\pi\sqrt{LC}$
- b) $\frac{\pi}{4}\sqrt{LC}$ c) $2\pi\sqrt{LC}$ d) \sqrt{LC}
- 60. A signal of frequency 20 kHz and peak voltage of 5 Volt as used to modulate a carrier wave of frequency 1.2 MHz and peak voltage 25 Volts. Choose the correct statement.
- a) Modulation index=5, side frequency bands are at 1400 kHz and 1000 kHz
- b) Modulation index=5, side frequency bands are at 21.2 kHz and 18.8 kHz
- c) Modulation index=0.8, side frequency bands are at 1180 kHz and 1200 kHz
- d) Modulation index=0.2, side frequency bands are at 1220 kHz and 1180 kHz

Section- MATEHMATICS

This section contains 30 Multiple Choice Questions. Each question has four choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

- **61.** A survey of 500 television viewers produced the following information, 285 watch foot ball, 195 watch hockey, 115 watch basket ball, 45 watch foot ball and basket ball, 70 watch foot ball and hockey, 50 watch hockey and basket ball, 50 do not watch any of the three games. The number of viewers, who watch exactly one of the three games is
 - a) 325
- b) 310

- c) 315
- d) 372
- **62.** The minimum number of elements that must be added to the relation $R = \{(1,2),(2,3)\}$ on the set $\{1,2,3\}$ so that it is an equivalence relation
 - a) 3

b) 5

c) 6

d) 7

	63.	$f: R - \{0\} \to R$	given by f	$r(x) = \frac{1}{x}$	$\frac{2}{a^{2x}-1}$	can be made continuous	s at $x = 0$	by defining	f(0) as
--	-----	----------------------	------------	----------------------	----------------------	------------------------	--------------	-------------	---------

a) 1

b) 2

c) -1

d) 0

64. If z represent a point on the circle |z| = 2 then the locus of the point $z + \frac{1}{z}$ is

a) parabola

- b) circle
- d) hyperbola

65. The quadratic equation $8\sec^2 x - 6\sec x + 1 = 0$ has

- a) No real root
- b) Two real roots
- c) Many roots
- d) Only one real root

66. If 8 G.M.'s are inserted between 2 and 3 then the product of the 8 G.M.'s is

a) 6

b) 36

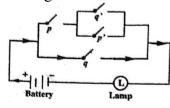
- c) 216
- d) 1296

67. If x,y,z are in A.P with common difference 'd' and the rank of the matrix $\begin{bmatrix} 4 & 5 & x \\ 5 & 6 & y \\ 6 & k & z \end{bmatrix}$ is 2 then the values

of k, d are

- a) $6, \frac{x}{2}$

- b) 5, x c) any arbitrary, x d) 7, any arbitrary


68. If $\Delta = \begin{vmatrix} f(x) & f\left(\frac{1}{x}\right) + f(x) \\ 1 & f\left(\frac{1}{x}\right) \end{vmatrix} = 0$ where f(x) is a polynomial and f(2) = 17 then f(5) = --c) 82 d) 79

69. The distance between the line $r = 2i - 2j + 3k + \lambda(i - j + 4k)$ and the plane $r \cdot (i + 5j + k) = 5$ is

- b) $\frac{10}{2\sqrt{3}}$

- c) $\frac{10}{3\sqrt{3}}$ d) $\frac{10}{2}$

70. The symbolic form of logic of the circuit given below is

a) $\lceil (p \land q') \lor p' \rceil \land q$

b) $\lceil p \lor (q' \land p') \rceil \lor q$

b) c) $\lceil (p \wedge p') \vee q' \rceil \wedge q$

 $d\lceil p \land (q' \lor p') \rceil \lor q$

71. The number of 4 digited even numbers whose sum is 34

72. The number of ordered triplets of +ve integers which satisfied the inequalities $20 \le x + y + z \le 50$ is

- a) ${}^{50}C_{3}$
- b) $^{19}C_{2}$

- c) ${}^{50}C_2 {}^{19}C_2$
- d) $^{69}C_{2}$

73. If $\sum_{r=1}^{n} a_r = \frac{n(n+1)(n+2)}{6} \forall n \ge 1$, then $\sum_{r=1}^{n} \frac{1}{a_r} = \frac{1}{n+1} = \frac{1}{$

- a) 1
- b) $\frac{3}{2}$

c) 2

d) 3

74. Value of $\sum_{k=1}^{\infty} \sum_{k=1}^{k} \frac{1}{3^k} (kC_r)$

a) 1

b) 0

d) 2

75. If $y = (1-x)(1+x^2)(1+x^4)...(1+x^{2n})$, then $\frac{dy}{dx}$ at x = 0 is equal to

- a) -1
- b) $\frac{1}{(1+r)^2}$

- c) $\frac{x}{(1+x^2)}$ d) $\frac{x}{(1-x)^2}$

76. Consider p(x) to be a polynomial of degree 5 having extremum at x = -1, 1 and $\lim_{x \to 0} \left(\frac{P(x)}{x^3} - 2 \right) = 4$. Then the

- value of [P(1)] is (where [.] represents greatest integer function)
- a) 1

b) 2

c) 3

d) 4

77. $\int \frac{\sin^2 x \cdot \cos^2 x}{\left(\sin^5 x + \cos^3 x \cdot \sin^2 x + \sin^3 x \cdot \cos^2 x + \cos^5 x\right)^2} dx =$

- a) $\frac{1}{3(1+\tan^3 x)} + c$ b) $\frac{1}{3(1+\tan^3 x)} + c$ c) $\frac{1}{1+\cot^3 x} + c$ d) $\frac{-1}{1+\cot^3 x} + c$

78. $\int (\sin 101x) \sin^{99} x \, dx = \frac{\sin(100x) \sin^{100} x}{k+5} + c \text{ then } \frac{k}{19} =$

d) 5

79. If $g(x) = \cos x^2$, $f(x) = \sqrt{x}$ and α , $\beta(\alpha < \beta)$ are the roots of $18x^2 - 9\pi x + \pi^2 = 0$ then the area bounded by the curve y = (gof)(x) and the lines $x = \alpha$, $x = \beta$ and y = 0 is

- b) $\frac{\sqrt{3}+1}{2}$ c) $\frac{\sqrt{3}-1}{2}$ d) $\frac{1}{2}$

80. If y = f(x) passing through (1,2) satisfies the differential equation y(1+xy)dx - xdy = 0 then

	$f(x) = \frac{2x}{2 - x^2}$	b) $f(x) = \frac{x+1}{x^2+1}$	c) $f(x) = \frac{x-1}{4-x^2}$	d) $f(x) = \frac{4x}{1 - 2x^2}$
81.		(7, 0) and y-axis at B(0, BP intersect in R, then I		is drawn perpendicular to AB cutting x, y-
	a) $x^2 + y^2 + 7x - 5y$	y = 0	b) $x^2 + y^2 - 7$	7x + 5y = 0
	c) $x^2 + y^2 - 3x + 4y =$	= 0	d) $x^2 + y^2 + 6$	•
82		ough the origin O me The point O divides		4x+2y=9 and 2x+y+6=0 at points I he ratio
	a) 1:2	b) 3:4	c) 2:1	d) 4:3
83.	The number of integral whose radius cannot a) 14		ch $x^{2} + y^{2} + \lambda x + (1 - \lambda x^{2} + \lambda x^$	y+5=0 is the equation of a circle d) 18
84.		s of c such that the stra	ight line $y = 4x + c$ to	uches the curve
	$x^2/4 + y^2 = 1$ is a) 0	b) 1	c) 2	d) infinite
85.	The plane $x - 2y + 3z$ a) 3:5	z = 17 divides the line b) 3:10	joining the points (-2, c) 3:7	4, 7) and (3, -5, 8) in the ratio d) none of these
86.	5x + 2y - 7z + 9 = 0	nces from the points (1		
07	a) 2:1	b) 1:3		d) 3 : 2
8/.	a) 20.0	b) 10.1	c) 20.2	neir mean is 255, then the d is equal to d) 10.0
88.	If n integers taken at is 1, 3, 7 or 9 is	random are multiplied	together, then the prol	pability that the last digit of the product
	a) $\frac{2^n}{5^n}$	b) $\frac{8^n - 2^n}{5^n}$	c) $\frac{4^{n}-2^{n}}{5^{n}}$	d) None of these
89.	If $\tan \beta = 2\sin \alpha \cdot \sin \gamma$.	$\csc(\alpha + \gamma)$, then $\cot \alpha$	α , $\cot \beta$, $\cot \gamma$ are in	

c) H.P. d) none of these

a) A.P. b) G.P. c) H.P. **90.** If $\cos^{-1} \alpha + \cos^{-1} \beta + \cos^{-1} \gamma = 3\pi$ then the value of $\alpha\beta + \beta\gamma + \gamma\alpha =$ c) 0 b) 2 a) 1 d) 3

Section- CHEMISTRY

This section contains **30 Multiple Choice Questions**. Each question has four choices (a), (b), (c) and (d) out of which **ONLY ONE** is correct.

91	A mixture of CO	and CO2 has vapour of	lensity 20 at STP, 100 g	of this mixture contains	mole of CO			
a)	0.4	b) 0.2	c) 0.625	d) 0.375				
92.	If ideal gas expand	ds at constant tempera	ature					
		molecules increases						
	number of gas mo							
	kinetic energy of the molecules remains same							
	pressure of the ga							
93.	Number of photor	ns emitted by 10 watt	bulb in 10 seconds, if wa	avelength of the light is 100	0 Å, is			
	1.01×10^{11}		c) 3.03×10^{15}					
94.	The hybridization	of atomic orbitals of	N in NO_2^+ , NO_3^- and N	NH_4^+ are respectively				
a)	sp, sp^2, sp^3	b) sp,sp ³ ,sp ²	c) sp^2 , sp , sp^3	d) sp^2 , sp^3 , sp				
95.				ules) are in the ratio 1:1: 0.5	5 and ΔH_f of XY is			
a)	800 kJ mol ⁻¹	b) 200 kJ mol ⁻¹ c)	300 kJ mol ⁻¹ d) 400 kJ i	mol^{-1}				
96.	Van't Hoff factors	s of aqueous solutions	s of X,Y,Z are 1.8, 0.8 an	d 2.5, Hence, their				
,	boiling point: Z <		, 01					
c)	osmotic pressure:	X = Y = Z	d) vapour pressure	$Y \le x \le Z$				
97.	K_{sp} of $Mg(OH)$	$_{2}$ is 1 x 10^{-12} . 0.01 N	$MgCl_2$ will be precipit	ating at the limiting P^H				
a)	8	b) 9	c) 10	d) 12				
98.	On the basis of int	formation available fo	or the reaction: $\frac{4}{3}Al + O$	$O_2 \rightarrow \frac{2}{3} A l_2 O_3; \Delta G = -827 k$	zJ / mol of O_2 , the			
	minimum emf req	quired to carry out an	electrolysis of Al_2O_3 is:	(Given $1F = 96500 C$)				
a)	2.14 V	b) 4.28 V	c) 6.42 V	d) 8.56 V				
		sive reaction (al first	order)					
A	$\xrightarrow{k_1} B \xrightarrow{k_2} C$	$\xrightarrow{k_3} D$						
Th	e incorrect stateme	nts is						
a)	Concentration of	A decreases exponent	ially with time					

b) Concentration of both B and C first increases, reaches maxima, then decreases

c) If $k_1 < k_2$ and $k_2 < k_3$ [B] _{max} will be greated	er than $\left[C ight]_{ ext{max}}$.		
d) If $k_1 > k_2$ and $k_2 < k_3$ [B] _{max} will be greated	er than $[C]_{\max}$.		
100. Assertion (A): Colloidal solution is electric Reason (R): Due to similar nature of the charge to form bigger particles a) Both (A) and (R) are true and (R) is the corresponding to the correspo	carried by the parect explanation		
101. Which is the most basic oxide?a) SnO₂b) K₂O	c) CuO	d) FeO	
102. Which of the following acts as 'activator' is a) KCN b) NaCN c) Sodium ethy		ation process? d) Copper sulphate	
103. $CO + 2H_2 \xrightarrow{300^{\circ}/300 atm} CH_3OH$, the ca	ıtalyst is		
a) Fe b) Cr ₂ O ₃ /ZnO		d) Al_2O_3	
 104. Which of the following statement(s) is (are a) Li⁺ ion is exceptionally small and thus show b) Sodium oxide is amphoteric in nature c) Lithium is the strongest reducing agent d) All alkali metals and alkaline earth metals g 105. The structures of quartz, mica, asbestos has 	v covalent charac	ion in liquid ammonia	
a) $(SiO_4)^{4-}$ b) $(SiO_3)^{2-}$	c) (SiO ₃) ²	d) SiO ₂	
106. For advertisement the coloured discharged a) He b) Ne	c) Ar	d) Kr	
 107. Given below, catalyst and corresponding p a) [RhCl(pph₃)₂]: Hydrogenation c) V₂O₅: Haber-Bosch process 		C_2H_5) ₃ : Polymerization	
108. The EAN of $Co(CO)_4$ is 35. It attains stab	oility by		
a) Oxidation of $\left[Co(CO)_4\right]$	b) Reduction of $\left[Co(CO)_4\right]$		
c) Dimerization of $[Co(CO)_4]$	d) Both b and c		
109. Carcinogenic pollutant in the following is a) Polychlorinated biphenyls c) Tetrachloroethene	b) Sodium chlod) Both a and c		
		s digested according to Kjeldahl's method and the	

110. 29.5 mg of an organic compound containing nitrogen was digested according to Kjeldahl's method and the evolved ammonia was absorbed in 20 mL of 0.1 *M HCl* solution. The excess of acid required 15 mL of 0.1 *M NaOH* solution for complete neutralization. The percentage of nitrogen in the compound is

111. Hyper conjugation involves overlap of the following orbitals:

- a) $\sigma \sigma$
- b) σp
- c) p-p
- d) $\pi \pi$

112. What volume of methane at NTP is formed from 8.2 gm of sodium acetate by fusion with soda lime

- a) 10 litre
- b) 11.2 litre
- c) 5.6 litre`
- d) 2.24 litre

113.

$$C = CH$$

$$C - CH_3$$

$$HgSO_4/di.H_2SO_4$$

$$H_3O^+, \Delta$$
Product is

a)

$$CH - CH_3$$

b)

c)

$$CH_2 - CH$$

$$C - CH_3$$

$$0$$

d)

114. How many monochloro derivatives are possible when 3-methylpentane is subjected to free radical chlorination? (including stereo isomers)

a) 7

b) 5

c) 6

d) 4

115. $(CH_3)_2 NH \xrightarrow{KMnO_4} A$, $(CH_3)_2 NH \xrightarrow{H_2SO_5} B$. Here A and B are

a) Tetramethylhydrazine and dimethyl hydroxyl amine

	b) Dimethylphenol ami	ine and Tetramethyl hyd	razine				
	c) Tetramethylhydrazine and Tetramethyl hydrazine						
	d) Dimethyl hydroxyl a	amine and Dimethyl hyd	lroxyl amine				
	116. Gutta-percha, a na	aturally occurring highly	crystalline non-elastic	rubber, consists	of		
	a) 1, 4-polyisoprenes in	n which all the double be	onds have E-configurati	ons			
	b) 1, 4-polyisoprenes in	n which all the double be	onds have Z-configurati	ions			
	c) A mixture of Z-1, 4-	polyisoprenes and E-1,	4-polyisoprenes				
	d) 1, 4-polyisoprenes in	n which some double bor	nds have Z-configuratio	ns and some	other have E-configurations		
	117. Statement-I: Gluc	ose is in pyranose form	and has free anomeric h	nydroxyl group			
	Statement -II: In sucro	se, glucose is in pyranos	se form and fructose is i	n furanose form			
	a) Both I and II are true	e b) I is true, but II is fal	se				
	c) I is false, But II is tru	ue	d) both I and II are fa	alse			
	118. The drug used for	the treatment of throat i	infection is				
	a) quinine		b) piperazine				
	c) sulpha drug like sulp	phanilamide	d) isonicotin hydrazi	de			
	119. Which of the follo	owing statement is not co	orrect?				
	a) Only α-amino acid	ds are obtained on hydro	olysis of proteins				
	b) The amino acids wh	ich are synthesized in th	e body are known as no	on-essential ami	no acids		
	c) There are 20 essentia	al amino acids					
	d) L-amino acids are re	epresented by writing the	e^{-NH_0} group on the 1	eft side			
	,	, ,	2 0 1				
	120. In a reaction invol	lving ring substitution of	f C ₆ H ₅ Y, the major proc	duct is meta-isor	ner. The group Y can be		
	$a) - NH_2$	b) – COOH	c) -CH ₃	d) -Cl			
		Section-Bl	IOLOGY				
		Section- <u>Di</u>	<u>IOLOGI</u>				
		-	ons. Each question has	s four choices ((a), (b), (c) and (d) out of		
which	ONLY ONE is correct	et.					
	121. When two or m using the epithet?	-	new species or propo	ose a new nam	ne, their names are linked		
	a) In	b) Ex	c) emend	d) et			
	122 Members of wh	ich kingdom have cell	walls and are all hete	erotrophic?			
	a) Plantae	b) Fungi	c) Animalia	d) Protista			
	, 1 minut	<i>-) - 4.1.6.</i>	<i>-,</i>	<i>a,</i> 110110111			
	123. Squamous epith	elium occurs in inner	lining of				
	a) Kidney	b) Pancreatic duct	c) Lung Alveoli	d) Heart			

a) Eukaryotic cells hb) Prokaryotic cells lc) Eukaryotic cells h	ave membrane-bound have a nucleus ave genetic information are surrounded by a celegion.	organelles n			
125. DNA structure a) 1953	was discovered by Wa b) 1962	tson and Crick in c) 1952	d) 1951		
126. Name the phenomembrane?	omena that begins who	en sugar solution is sep	parated from water by a semipermeable		
a) Osmosis	b) Diffusion	c) Imbibition	d) Translocation		
127. This is a rich so a) Rice	ource for Vitamin C b) Milk	c) Egg	d) Lemon		
128. Synthesis of AIa) Phosphorylationc) Oxidative Phosphorylation	$OP + Pi \rightarrow ATP$ in gran	na is b) Photophos d) Photolysis	sphorylation		
129. Citric acid cycle a) Cytosol	e takes place in b) Peroxisomes	c) mitochondria	d) None of these		
130. Coiling of garden a) Thermotaxis	en pea tendrils around b) Thigmotaxis	any support is an exan c) Thigmotropism	nple of d) Thigmonasty		
131. The instrument a) ECG	used for measuring blo b) Stethoscopec) Spl	•	as d) EEG		
	od passes through kidno 150-200 ml c) 10	ey per minute is 00-120 ml	d) 50-100 ml		
133. Hinge jointsa) Are synovial jointc) Are found in knee		b) Permit movement d) All of these	ts in one direction		
134. When a neuron is in resting state i.e. not conducting any impulse, the axonal membrane is a) Comparatively more permeable to K^+ ions and nearly impermeable to Na^+ ions b) Comparatively more permeable to Na^+ ions and nearly impermeable to K^+ ions c) Equally permeable to both Na^+ and K^+ ions d) Impermeable to both Na^+ and K^+ ions					
135. Parthenocarpy la) Seed fruit	leads to b) Seedless fruit	c) No fruit	d) Seed formation		
136. Tyson's glands a) urethra	occur in male on b) scrotum	c) prepuce	d) epididymis		
137. Chromatin is co	omposed of	-			

a) Nucleic acid and proteinc) Only protein	b) Only Nucleic acidd) None of these
138. B-lymphocytes area) Formed in bone marrowb) Preprocessed in bone marrowc) Preprocessed in liverd) Both Formed in bone marrow and	l Preprocessed in bone marrow
139. Choose the complex fertilizera) Potassium sulphatec) Triple super phosphate	b) Calcium ammonium nitrate d) Urea ammonium phosphate
140. Hop flowers are used fora) Gluconic acid productionc) Vinegar production	b) Citric acid productiond) Beer production
141. The two DNA strands are held a) Nitrogen b) Oxygen	together by bonds of c) Hydrogen d) Carbon
142. Green Fluorescent Protein wasa) Jellyfishb) Primate	first observed in c) Cuttlefish d) Shark
143. The carrying capacity of a populara) Natalityc) Limiting resources	ulation is determined by its b) Population growth rate d) Mortality
144. The richness of species in an eda) Genetic diversityc) Community diversity	b) Species diversity d) All of these
145. Red data book provides data or a) red flowered plants c) endangered plants and animals	b) red coloured fishes d) red eyed birds
146. The Taj Mahal is being affected a) Noise pollution b) Air pollution	•
147. Blood flow in lungs is circulateda) Cardiac circulationc) Pulmonary circulation	ed by b) Gastric circulation d) trachea
148. Which of these is true for gastra) Kill bacteriac) Include hydrochloric acid	ic juices? b) Digest food d) All of these
149. Which of the following country a) India b) South Africa	

150. Disease caused by eating fish inhabiting mercury contaminated water is

a) Hiroshima episode

b) Mina-mata disease

c) Bright's disease

d) Osteosclerosis

To view more Previous Year Question Papers login to https://admission.lpu.in/