

click to campus

GPAT 2011 Question Paper with Answer Key

Graduate Pharmacy Aptitude Test conducted by NBEMS

Download GPAT Previous Year Question Papers & Syllabus - Click Here

GPAT QUESTION PAPER 2011 WITH ANSWER KEY

GPAT QUESTIONS

A glycoalkaloid					
[P] Contains sulphur	in addition to nitrogen	in it	s molecule		
[Q] Is glycosidic in na	ature.				
[R] Can be hydrolyse	d to an alkaloid.				
[S] Always contains e	ndocyclic nitrogen in i	ts m	olecule.		
(a) P&R	(b) Q&S	(c)	Q&R	(d)	P&Q
Which of the following	ng statements are true	for g	ginseng root		
[P] It is among the m	ost traded plant materi	ial of	f Brazil		
[Q] It is obtained from	n <i>Panax ginseng</i> and <i>P</i>	anax	quinquefolium		
[R] It is obtained from	n young plants of six n	nont	hs to one year age	e	
[S] It contains derivat	tives of protopanaxadi	ol.			
(a) P&Q	(b) R&S	(c)	Q&R	(d)	Q&S
Which of the following	ng drugs is a triterpend	id c	ontaining root?		
(a) Valerian	(b) Brahmi	(c)	Satavari	(d)	Adusa
Which of the following	ng alkaloids is derived t	rom	tyrosine		
(a) Quinine	(b) Morphine	(c)	Atropine	(d)	Ephedrine
The following options	s carry the name of the	pla	nt, part used and i	its fa	mily. Find awrong combination.
(a) Aegle marmelos,	fruit & Rutaceae				
(b) Conium maculati	um, fruit & Umbellifera	e			
(c) Glycyrrhiza glabi	ra, root and stolon & Lo	egun	ninosae		
(d) Strophanthus gra	atus, seed & Scrophula	riace	eae		
Anomocytic stomata,	trichomes with collap	sed	cell and absence	of ca	alcium oxalate crystals are some of
themicroscopic featur	res of which plant				
(a) Digitalis	(b) Hyoscyamus	(c)	Mentha	(d)	Senna
Each of the followin	g options lists the na	me	of the drug, its c	lass,	pharmacologicalaction and plant
source.Choose an opt	tion showing a wrong	com	bination.		
(a) Asafoetida, oleo-g	gum-resin, anti-f l atulen	ce, F	erula foetida		
(b) Benzoin, bakam,	antiseptic, Styrax benz	oin			
(c) Myrrh, gum-resin	n, antiseptic, <i>Commiph</i> e	ora v	vightii		
(d) Papaine, enzyme	, proteolytic, <i>Carica pa</i>	paya			

8.	Quinoline alkaloids are biosynthesized via which	h on	e of the following pathways
	(a) Shikimic acid -tyrosine	(b)	Shikimic acid -tryptophan
	(c) Shikimic acid -cathinone	(d)	Shikimic acid - phenylalanine
9.	Which of the following ergot alkaloids is water s	soluk	ole and shows blue fluorescence
	(a) Ergosine	(b)	Ergotamine
	(c) Ergocristme	(d)	Ergometrine
10.	Khellin is an active constituent of which one of t	he fo	ollowing plants
	(a) Prunus serona	(b)	Tribulus terrestis
	(c) Ammi visnaga	(d)	Vanilla plamfolia
11.	Goldbeater's skin test is used to detect the prese	ence	of which one of the following classes of compounds
	(a) Tannins	(b)	Steroids
	(c) Glycerides	(d)	Resins
12.	Which one of the following compounds is usefu	l for	the stimulation of cell division and release of lateral
	bud dormancy?		
	(a) zeatin	(b)	2, 4-Dichlorophenoxyacetic acid
	(c) Indole acetic acid	(d)	Picloram
13.	Phenylethylisoquinoline is the precursor of which	ch of	f the following alkaloids
	(a) Colchicine	(b)	Papaverine
	(c) Emetine	(d)	Cephaline
14.	A powdered drug has the following microscopic of	hara	cters: Anther cells, parenchyma, pollen grains, phloem
	fibers, volatile oil cells and stone cells. The powd	er is	obtained from which of the followings?
	(a) Clove bud powder	(b)	Clove bud powder with stalk
	(c) Mother Cove	(d)	None of the above
15.	Arrange the following fatty acids in decreasing of		
	[P] Stearic [Q] Oleic acid		Linolenic acid [S] Linoleic acid
	(a) P>Q>R>S	` ′	S>R>P>Q
	(c) R>S>Q>P	(d)	Q>P>R>S
16.	Determine the correctness or otherwise of the fo	ollow	ring Assertion [a] and the Reason [r]:
	Assertion (a): Tannins are polyphenolic substance	es oc	curring in plant cell sap. Hydrolysable and condensed
	tannins are differentiated by match stick test.		
	Reason (r): The condensed tannins are resistan	t to a	acid hydrolysis therefore stain the lignin present in
	matchstick.		
	(a) Both (a) and (r) are true, and (r) is a correct	t rea	son for (a)
	(b) Both (a) and (r) are true, but (r) is NOT the	corr	ect reason for (a)
	(c) (a) is true but (r) is NOT the correct reason	for (a)
	(d) Both (a) and (r) are false		

17.	Determine the correctness or otherwise of the ${\bf f}$	ollov	ving Assertion [a]	and the Reason [r]:			
	Assertion (a):Castor oil is soluble in alcohol and	l is u	sed as purgative.				
	Reason (r): The oil contains ricinoleic acid having a hydroxyl group at C-12 position which is responsible						
	for its solubility in alcohol and its purgative action.						
	(a) Both (a) and (r) are true but (r) is NOT the correct reason for (a)						
	(b) (a) is true but (r) is NOT the correct reason	for	(a)				
	(c) Both (a) and (r) are true and (r) is the corr	ect r	eason for (a)				
	(d) Both (a) and (r) are false						
18.	In acetate mevalonate pathway geranyl pyropho	osph	ate leads to form	ation of monoterpenes, the major			
	constituents of volatile oils.						
	[P] Geranyl pyrophosphate contains two isoprer	ne ur	nits				
	[Q] Monoterpenes have 15 carbon atoms						
	[R] The two isoprene units condense in head to	tail f	ashion to give Mo	noterpenes			
	[S] Isoprene unit has molecular formula of C ₅ H ₈			-			
	which one of the given statements is correct?						
	(a) P is true. Q is false, R is true, S is false		(b) P is false. Q is	s true, R is true, S is false			
	(c) P is true. Q is true, R is fa1se, S is true		(d) P is true. Q is	false, R is true, S is true			
19.	Two genetic types of Cannabis i.e. drug type and	Hen	np types are cultiv	ated.			
	[P] Drug type cannabis is rich in (-) 9-trans-tetra						
	[Q] Hemp type cannabis is rich in cannabidiol						
	[R] Drug type cannabis is rich in cannabidiol						
	[S] Hemp type cannabis contains elongated bast	fibre	es				
	which one of the given statements is correct?						
	(a) P is true, Q is true, R is true, S is true		(b) P is true, Q is	false, R is false, S is true			
	(c) P is true, Q is true, R is false. S is true		(d) P is false, Q is	false, R is true, S is false			
20.	Each of the following options lists a phytoconstitu	uont	ite phytochomica	grouping pharmacological activity			
20.	and corresponding semisynthetic analogue. Find						
			пэмятения орс	1011			
	(a) Podophyllotoxin, lignan, anticancer, etoposide						
	(b) Sennoside, anthraquinone, laxative, sinigrin(c) Atropine, alkaloid, anticholinergic, homatrop						
	(c) Atropine, alkaloid, anticholinergic, homatroj(d) THC, terpenophenolic, psychoactive, nabilo	•					
21.			romo PASO onzumo	eretom ismost likoly to be involved			
21.		ociii	ome P450 enzyme	system ismost likely to be involved			
	in important drug-drug interactions	(a)	CVD2CO	(d) CVP1 42			
	(a) CYP3A4 (b) CYP2D6	(c)	CYP2C9	(d) CYP1A2			
22.	Which of the following mechanisms is NOT related	ed to	platelet aggregati	on inhibitory action			
	(a) ADP receptor antagonism	(b)	Glycoprotein IIb/	IIIa receptor antagonism			
	(c) Phosphodiesterase inhibition	(d)	Prostacyclin inhib	pition			

23.	Choose the correct statement about the given f	four (diseases?			
	[P] Cardiomyopathy	[Q]	Rheumatoid arthritis			
	[R] Myasthenia gravis	[S]	Ulcerative colitis			
	(a) Q & S are autoimmune disorders	(b)	P & Q are autoimmune disorders			
	(c) P & R are not autoimmune disorders	(d)	R & S are not autoimmune disorders			
24.	Which of the following species is being inactiva	ted b	y the enzyme Dipeptidyl Peptidase-4			
	(a) Oxytocin (b) vasopressin	(c)	Incretins (d) Glucagon			
25.	Patients taking isosorbide mononitrate or nitr	rogly	cerine should be advised not to take Sildenafil. Thi			
	drug- drug interaction causes which of the follo	wing	gactions			
	(a) Respiratory failure	(b)	Severe hypotension			
	(c) Prolongation of QT interval	(d)	Myocardial ischemia			
26.	Which of the following drugs does NOT induce	mydr	iasis?			
	(a) Atropine (b) Ephedrine	(c)	Phentolamine (d) Cocaine			
27.	Which of the following statements is TRUE for a	angio	tensin-II			
	(a) Causes myocyte hypertrophy					
	(b) Decreases the action of sympathetic nervous system					
	(c) Increases force of myocardial contraction					
	(d) Decreases the synthesis and release of ald	oster	one			
28.	Which of the following beta blockers has been sho	own c	clinically to reduce mortality inpatients of symptomatic			
	heart failure http://www.xamstudy.com					
	(a) Atenolol (b) Carvedilol (c)	Pro	pranolol (d) Esmolol			
29.	All of the given four drugs cause vasodilatation.	. Cho	ose the correct statement about them.			
	[P] Bradykinin [Q] Minoxidil [R]	Acet	ykholine [S] Hydralazine			
	(a) P & Q cause release of nitric oxide	(b)	Q & R do not cause release of nitric oxide			
	(c) R & S cause release of nitric oxide	(d)	P & S do not cause release of nitric oxide			
30.	Rhabdomyolysis is the side effect associated with	th wh	nich of the following classes of drugs			
	(a) ACE inhibitors	(b)	Statins			
	(c) Calcium channel blockers	(d)	Sodium channel blockers			
31.	Blood level monitoring of HbA1c is important in	n whi	ch of the given diseased states			
	(a) Hypercholesterolemia	(b)	Diabetes mellitus			
	(c) Myocardial infarction	(d)	Congestive heart failure			
32.	Most of the emergency contraceptives have wh	ich o	ne of the following active ingredients			
	(a) Estradiol (b) Norethindron	(c)	Misoprostol (d) Levonorgesterol			
33.	Which of the following antibiotics produces cond	centra	ation dependent bactericidal action and also possesses			
	post-antibiotic effect					
	(a) Ceftazidime (b) Azithromycin	(c)	Amikacin (d) Piperacillin			
34.	Antiretroviral Raltegravir is unique, because of	whic	th of its following actions			
	(a) Integrase inhibition	(b)	CCR5 Co-receptor antagonism			
	(c) Fusion inhibition	(d)	Reverse transcriptase inhibition			

35.	What is chemotaxis				
	(a) Toxicity of chemicals	(b)	Taxonomy of chemica	als	
	(c) Inhibition of Inflammation	(d)	Movement of leucocy	tes in	inflammation
36.	Which one of the followings is NOT an example	of G-	protein coupled recep	tor?	
	(a) Muscarinic cholinergic receptor	(b)	Alpha adrenoceptor		
	(c) Nicotinic cholinergic receptor	(d)	Beta adrenoceptor		
37.	Which of the followings used in the treatment of	rheu	matoid arthritis is NO	T a b	iologic response modifier
	(a) Anakinra (b) Leflunomide	(c)	Etanercept	(d)	Infliximab
38.	Which of the following statements is FALSE for a	arten	nisinin?		
	(a) It is a sesquiterpene lactone endoperoxide				
	(b) It is a drug of choice in prophylaxis of mala	ria			
	(c) It does not cure relapsing malaria				
	(d) It is useful in treatment of cerebral fakiparu	um m	alaria		
39.	Which of the followings is a noncompetitive inh	iibito	r of the enzyme rever	se tra	inscriptase in HIV
	(a) Lamivudine (b) Nevirapine	(c)	Abacavir	(d)	Tenofovir
40.	Which of the followings is the most effective m	onotl	herapy for raising HD	L cho	lesterol
	(a) Statins (b) Niacin	(c)	Ezetimibe	(d)	ω-3-Fatty acids
41.	Which of the following parameters from plasm	a cor	ncentration time profi	le stu	dy givesindication of the
	rate of drug absorption?				
	(a) C_{max} (b) T_{max}	(c)	AUC	(d)	t _{1/2}
42.	Which of the following pairs has high binding a	ffinit	y for 5α -reductase		•
	(a) Letrozole and androstenedione		(b) Finasteride and t	estol	actone
	(c) Finasteride and 5-DHT		(d) Finasteride and	testos	sterone
43.	Which of the following skeletal muscle relaxants	s acts	directly on the contra	actile	mechanism of the musck
	fibers				
	(a) Pancuronium (b) Baclofen		(c) Dantrolene	(d)	Chorzoxazone
44.	Which is the molecular target for the vinca alkal	loids a	as anticancer agents		
	(a) Tyrosine kinase (b) DNA		(c) Ribosomes	(d)	Tubulin
45.	Choose the correct pair of the neurodegenerati	ve di	sorders from those gi	ven b	elow.
	(a) Parkinson's disease and Alzheimer's disease	se	(b) Schizophrenia an	nd Ma	ania
	(c) Alzheimer's disease and Schizophrenia		(d) Parkinson's dise	ase a	nd Autism
46.	A 64 year old woman with a history of Type I	II dia	betes is diagn <mark>osed w</mark>	ith h	eart failure. which of the
	followings would be a Poor choice in controlling	g her	diabetes		
	(a) Metformin (b) Pioglitazone		(c) Glipizide	(d)	Exenatide

47.	Mifepristone and gemeprost combination is used for medical termination of pregnancy. The action is causeddue to which of the following mechanisms					
	(a) Mifepristone is an antiestrogen while gemeprost is a prostaglandin E receptor agonist					
	(b) Mifepristone is an antiprogestin while gemeprost is a prostaglandin E receptor agonist					
	(c) Mifepristone is an antiandrogen while gemeprost is a prostaglandin E receptor agonist					
	(d) Mifepristone is an antiprogestin while gemeprost is a prostaglandin E receptor antagonist					
48.	Which one of the followings is a β lactamase inhibitor					
	(a) Penicillanic acid (b) Embonic acid					
	(c) Cephalosporanic acid (d) Clavulanic acid					
49.						
	(a) Hypertension (b) Myocardial infarction					
	(c) Left ventricular dysfunction (d) Pheochromocytoma					
50.						
	(a) Ethosuximide (b) Vigabatrin (c) Valproic acid (d) Primidone					
51.	Which water is used for hand washing in a change room of pharmaceutical manufacturing plant?					
	(a) Potable water (b) Purified water (c) Disinfectant water (d) Soap water					
52.	Which one of the following drying methods is commonly used in Pharma industry for dryingof soft shell capsules?					
	(a) Truck drying. (b) Fluid bed drying (c) Vacuum drying (d) Microwave drying					
53	Which one of the followings does NOT afford a macromolecular inclusion compound					
00.	(a) Zeolites (b) Dextrins (c) Silica gets (d) Cyclodextrins					
54.	If C is the concentration of dissolved drug and Cs is the saturation concentration. In which case the					
	sink conditions are said to be maintained?					
	(a) C < 20% of Cs (b) C > 20% of Cs (c) C < 10% of Cs (d) C > 10% of Cs					
55.	Which condition does not apply as per Indian law while conducting single dose bioavailability study of an					
	immediate release product					
	(a) Sampling period should be at least three t1/2 el					
	(b) Sampling should represent pre-exposure, peak exposure and post-exposure phases					
	(c) There should be at least four sampling points during elimination phase					
	(d) Sampling should be continued till measured AUC is at least equal to 80% of AUC					
56.	Upon standing sometimes gel system shrinks a bit and little liquid is pressed out. What is this phenomenon,					
	known as					
	(a) Oozing (b) Syneresis (c) Shrinking (d) Desolvation					
57.	Which of the following routes of administration of drugs is associated with Phlebitis					
	(a) Subcutaneous (b) Intravenous (c) Intraspinal (d) Intradural					

	(a) Chick Martin test uses or			
	(b) The organism in Rideal-w	alker test is <i>S. typhi</i>		
	(c) Rideal-walker test uses or	ganic matter in media		
	(d) The organism in Chick Ma	artin test is <i>S. typhi</i>		
63.	Which of the following forces	contribute to stability	of charge-transfer compl	exes
	(a) Resonance forces			
	(a) Resonance forces(b) Resonance and London d	lispersion forces		
	• /	-	on forces	
	(b) Resonance and London d	s and London dispersio		
	(b) Resonance and London d(c) Dipole-dipole interactions(d) Resonance forces and dipWhich of the following isother	s and London dispersion pole-dipole interactions erms are produced wh	;	tion of successive layers i
	(b) Resonance and London d(c) Dipole-dipole interactions(d) Resonance forces and dipWhich of the following isothermore than the heat of adsorption	s and London dispersion pole-dipole interactions erms are produced wh	s nen the heat of condensa	tion of successive layers i
	 (b) Resonance and London d (c) Dipole-dipole interactions (d) Resonance forces and dip Which of the following isothermore than the heat of adsorption (a) Type III and IV 	s and London dispersion pole-dipole interactions erms are produced wh	en the heat of condensa (b) Type II and V	tion of successive layers i
64.	 (b) Resonance and London d (c) Dipole-dipole interactions (d) Resonance forces and dip Which of the following isothermore than the heat of adsorption (a) Type III and IV (c) Type I and III 	s and London dispersion pole-dipole interactions erms are produced wh tion of first layer	en the heat of condensa (b) Type II and V (d) Type III and V	tion of successive layers i
	 (b) Resonance and London d (c) Dipole-dipole interactions (d) Resonance forces and dip Which of the following isothermore than the heat of adsorption (a) Type III and IV (c) Type I and III Which of the followings act as 	s and London dispersion pole-dipole interactions erms are produced wh tion of first layer	en the heat of condensate) (b) Type II and V (d) Type III and V ag agent	
64.	(b) Resonance and London d (c) Dipole-dipole interactions (d) Resonance forces and dip Which of the following isother more than the heat of adsorpt (a) Type III and IV (c) Type I and III Which of the followings act as (a) Triethanolamineoleate	s and London dispersion of the control of the contr	ten the heat of condensation (b) Type II and V (d) Type III and V (and the second of t	bitan monooleate
64.65.	(b) Resonance and London d (c) Dipole-dipole interactions (d) Resonance forces and dip Which of the following isother more than the heat of adsorpt (a) Type III and IV (c) Type I and III Which of the followings act as (a) Triethanolamineoleate (c) N-Cetyl-N-ethylmorpholin	s and London dispersion of the control of the contr	ten the heat of condensation (b) Type II and V (d) Type III and V (ag agent (b) Polyoxyethylene son (d) Dioctylsulphosuccin	·bitan monooleate ate
64.65.	(b) Resonance and London d (c) Dipole-dipole interactions (d) Resonance forces and dip Which of the following isother more than the heat of adsorpt (a) Type III and IV (c) Type I and III Which of the followings act as (a) Triethanolamineoleate (c) N-Cetyl-N-ethylmorpholin The minimal effective flow rate	s and London dispersion of the control of the contr	ten the heat of condensation (b) Type II and V (d) Type III and V (ag agent (b) Polyoxyethylene son (d) Dioctylsulphosuccin	·bitan monooleate ate
64.65.	(b) Resonance and London d (c) Dipole-dipole interactions (d) Resonance forces and dip Which of the following isother more than the heat of adsorpt (a) Type III and IV (c) Type I and III Which of the followings act as (a) Triethanolamineoleate (c) N-Cetyl-N-ethylmorpholin The minimal effective flow rate minute	s and London dispersion of the control of the contr	ten the heat of condensation (b) Type II and V (d) Type III and V (ag agent (b) Polyoxyethylene sor (d) Dioctylsulphosuccin (hood should be not less th	·bitan monooleate ate an how many cubic feet pe
64.65.66.	(b) Resonance and London d (c) Dipole-dipole interactions (d) Resonance forces and dip Which of the following isother more than the heat of adsorpt (a) Type III and IV (c) Type I and III Which of the followings act as (a) Triethanolamineoleate (c) N-Cetyl-N-ethylmorpholin The minimal effective flow rate minute (a) 10 (b)	s and London dispersion of the color of the	ten the heat of condensation (b) Type II and V (d) Type III and V (example of the service of the	·bitan monooleate ate
64.65.66.	(b) Resonance and London d (c) Dipole-dipole interactions (d) Resonance forces and dip Which of the following isother more than the heat of adsorpt (a) Type III and IV (c) Type I and III Which of the followings act as (a) Triethanolamineoleate (c) N-Cetyl-N-ethylmorpholin The minimal effective flow rate minute (a) 10 (b) Which of the following Schedu	s and London dispersion of the color of the	ten the heat of condensation (b) Type II and V (d) Type III and V (example of the service of the	·bitan monooleate ate an how many cubic feet pe

68.	Which of the following pu	ımps is used in handli	ng of	corrosive liquids	
	(a) Turbine pump	(b) volute pump		(c) Air binding pump	(d) Peristaltic pump
69.	By addition of which of th	ne followings the shells	of so	oft gelatin capsules may be	madeelastic
	(a) Polyethylene glycol	(b) Sorbitol		(c) Propylene glycol	(d) Dibutyl phthalate
70.	Convert 90% v/v akohol	to Proof strength. Cho	ose t	the correct answer.	
	(a) 57.77° under proof			(b) 57.77° over proof	
	(c) 47.41° over proof			(d) 47.41° under proof	
71.	Department of Transport	Test (DOT) is perform	ed fo	or which of the followings	
	(a) Strip packing	(b) Aerosols		(c) Injection packing	(d) Glass containers
72.	What is the Heat of vapor	rization of water at 10	O°C?		
	(a) 2790 cal/mole	(b) 7290 cal / mole		(c) 7920 cal/mole	(d) 9720 cal/mole
73.	Determine the correctness	ss or otherwise of the	follov	wing Assertion [a] and the	e Reason [r]:
	Assertion[a]:For a pharm	naceutical powder true	e den:	sity is greater than the gra	nule density.
	Reason[r]: Mercury disp	lacement used for dete	ermin	ning granule density, allows	penetration of liquid into
	internal pores of the part	ticles.			
	(a) [a] is true but [r] is f	alse			
	(b) Both [a] and [r] are	false			
	(c) Both [a] and [r] are	true and [r] is the cor	rect 1	reason for [a]	
	(d) Both [a] and [r] are	true but [r] is NOT the	corr	ect reason for [a]	
74.	Determine the correctness	ss or otherwise of the	follov	ving statements:	
				gel more readily when sh	eared gently.
	[Q] In a rheopectic syster	*			
	[R] Rheopexy is a phenor	nenon when a sol forn	ns ge	l when the material is kep	t at rest
				[P] is true but [Q] and [R	
	(c) [P], [Q] and [R], all a			[P], [Q] and [R], all are tr	ue
75.	•				
			_	the red blood cells concent	
		O .		trate and returning the pla	sma to thedonor
		ating whiteblood cells			
		ating artificial blood p		•	
76.				zed by which one of thefo	llowings
	(a) Mobility in three dire				
	(b) Mobility in two direc		ne ax	ris	
	(c) Mobility in two direc				
	(d) Mobility in three dire				
77.	•	•		ismission Rate in packagii	
	(a) Paper >Aluminium fo			Aluminium foil >PVC>PVo	•
	(c) Aluminium foil>PVd(C>PVC> Paper	(d)	Paper >PVC>PVdC>Alumi	nium foil

78.	78. How many mL of 50% (w/v) dextrose solution and how many mL of 5% (v required to prepare 4500 mL of a 10 (w/v) solution?	v/v) dextrose solution are
	(a) 500 mL of 50% and 4000 mL of 5% (b) 1000 mL of 50% and 35 (c) 4000 mL of 50% and 500 mL of 5% (d) 1500 mL of 50% and 30	
79.	79. A drug is administered to a 65 Kg patient as 500 mg tablets every 4 hours. Half-1 of distribution is 2 liter/Kg and oral bioavailability of the drug is 0.85.Caku1ate the of the drug	
00		3.00 mcg/ml
80.	80. P-Glycoprotein pump is responsible for which one of the followings	
	(a) Transporting the drugs from the enterocytes into the gutlumen	
	(b) Transporting the drugs from gut lumen into enterocytes	
	(c) Transporting the drugs from oral mucosa into blood capillaries	
01	(d) Transporting the drugs from Peyer's patches into the gut lumen	u thain iania aina
81.	81. Statement [x]:Hofmeister series grades coagulating power of electrolytes as pe Statement[Y]:Therelative coagulating power is given by:	r their ionic size.
	[P] Al***> Ba ** [Q] Li > F - [R] NH*> Na*	
	Choose the correct statement:	
	(a) Statement x is true but P, Q and R are false in Statement Y	
	(b) Statement x is false and P, Q and R arefalsein Statement Y	
	(c) Statement x is true and Q and R are false in Statement Y	
	(d) Statement x is false and P is false in Statement	
82.	82. The first stage of wetting on addition of a granulating agent to the powders is o	haracterized by which one
	of the followings?	
	(a) Capillary state (b) Pendular state (c) Funicular state	(d) Droplet state
83.	83. Larger values of Ky in the Heckel Plot indicate formation of what quality of tab	olets?
	(a) Harder tablets (b) Softer tablets (c) Fluffy tablets	(d) Brittle tablets
84.	84. The degree of flocculation of a suspension is 1.5 and the sedimentation volum	ie is 0.75. what will be the
	ultimate volume of deflocculated suspension	
	(a) 2.0 (b) 1.5 (c) 0.75	(d)0.5
85.		t of 4.6/hr to be degraded
	from initial concentration of 100 mg/ml to 10 mg/ml?	
	(a) 2 hr (b) 4hr (c) 9 hr	(d) 0.5 hr
86.	86. What will be the dose required maintaining therapeutic concentration of 20 μ exhibiting total clearance of 2 L/hr?	igm/ml for 24 hr of a drug
	(a) 96 mg (b) 480 mg (c) 960 mg	(d) 48 mg
87.	87. What will be the urine to plasma ratio of a weakly acidic drug having pKa of 5	?
	[urine (pH : 5) plasma (pH : 7)]	
	(a) 1:101 (b) 1:201 (c) 2:101	(d) 1:202

88.	The Reynolds number wi	dely used to classify flow b	ehavior of fluids is the ra	tio of which one of the followings:		
	(a) Inertial forces to gr	avitational forces	(b) Inertial forces	to viscous forces		
	(c) Viscous forces to in	nertial forces	(d) viscous forces	to gravitational forces		
89.	If the distillation graph	using McCabe Thiele met	hod is parallel to x-axis,	then the feed is which one of the		
	followings?					
	(a) Saturated liquid		(b) Saturated vap	or		
	(c) Superheated liquid		(d) Superheated v	apor apor		
90.	What for the baffles are	provided in a shell and t	wbe heat exchanger?			
	(a) To increase turbule	nce	(b) To decrease tu	rbulence		
	(c) To prevent corrosion	on	(d) To increase sh	ell side passes		
91.	SOS means which one o	f the followings				
	(a) Take occasionally		(b) Take immedia	tely		
	(c) Take when necessa	ry	(d) Take as direct	ed		
92.	Which statement is FAL	SE for Association Colloid	ds			
	(a) They are also called	amphiphiles	(b) They contain a	aggregated molecules		
	(c) They show partial s	solvation	(d) They are also	called micelles		
93.	Which of the followings	is NOT a reciprocating p	ump			
	(a) Plunger pump		(b) Diaphragm pur	np		
	(c) Gear pump		(d) Piston pump			
94.	Which is NOT applicable	e to protein binding				
	(a) Klotz reciprocal plo	t	(b) Sandberg mod	lified equation		
	(c) Blanchard equation	l .	(d) Detli plot			
95.	Statement [P] : Soft gela	tin capsules contain 12-1	5 % moisture.			
	Statement [Q] : Hard gel	atin capsule shells contair	n 6-10 % moisture.			
	Choose the correct state	ement? http://www.xams	study.com			
	(a) Both of the above s	tatements P&Q are true	(b) Both of the ab	ove statements P&Q are false		
	(c) Statement P is true	and Q is false	(d) Statement P is	(d) Statement P is false and Q is true		
96.	According to USP, the	speed regulating device	e of the dissolution a	pparatus should be capable of		
	maintainingthe speed w	ithin limits of what % of	the selected speed?			
	(a) 1%	(b) 2%	(c) 4%	(d) 5%		
97.	A drug whose solubility	is 1 g/L in water, when g	iven orally at a dose of !	500 mg is absorbed up to 95% of		
	the administered dose. T	The drug belongs to whic	h class according to the	BCS classification?		
	(a) Class I	(b) Class II	(c) Class III	(d) Class IV		
98.	Which statement is NOT	true for steam distillatio	n			
	(a) It is also called differ	rential distillation				
	(b) It can be used for se	eparation of immiscible li	iquids			
	(c) It can be applied fo	r volatile substances				
	(d) It can be used for se	eparation of miscible liqu	ıids			

99. Th	e area of clear ope	ening of any two succ	cessive s	sieves accor	ding to Tyler sta	ndard is in the ratio of
(a)	1:4	(b) 1:6	(c)	1 : √2	(d) 1 : √3	
100. Wł	nat is Primogel					
(a)	Substituted HPM	IC for direct compre	ssion			
(b)	Modified microc	rystalline cellulose f	or direct	t compressi	on	
(c)	Hydro gellingpo	lymerfor gel formati	on			
(d)	Modified starch	for disintegration				
101. A	tooth paste conta	ins stannous fluori	de and o	calcium pyr	ophosphate alo	ng with other formulation
cor	nstituents. Choose	the correct statemen	nt out of	the followi	ngs?	
(a)	Stannous fluorid	e is an anticaries age	nt while	calcium py	rophosphate is a	dentifrice
(b)	Stannous fluorid	e is a dentifrice while	calcium	ı pyrophosp	hate is a desens	tizing agent
(c)	Stannous fluorid	e is a desensitizing a	gent wh	ile calcium p	yrophosphate is	an anticaries agent
(d)	Both are dentifri	ices while calcium py	rophosp	hate is addi	tionally a desens	itizing agent
102. Hy	drogen peroxide :	solution (20 volume	es) is us	ed topically	as a mi <mark>ld anti</mark> s	septic. It is mainly used for
cle	aning of wounds v	which could be due to	some (of the follow	ring actions of h	ydrogen peroxide.
[P]	Astringent action	n				
[Q]	Nascent hydroge	en releasing action				
[R]	Oxidizing action					
[S]	Mechanical clear	nsing action Choose t	he corre	ct statement	s for the use of h	ydrogen peroxide as cleaning
	agent for wound	ds				
(a)	P&R	(b) P&Q	(c)	R&Q	(d) R&S	
103. Ma	gnesium trisilicat	e is considered to be	a bette	r antacid th	an aluminium h	ydroxide due to its following
ado	litional properties	S:				
[P]	It has a fixed che	emical composition				
[Q]	It forms colloida	l silicone dioxide				
[R]	Magnesium ions	overcome constipat	tion			
[S]	Magnesium ions	cause higher inhibiti	on of pe	osin than alu	minium ions Cho	oose the correct combination
	of statements					
(a)	Q&S	(b) R&S	(c)	P&Q	(d) Q&R	
104. Bo	ric acid is a weak	acid (pKa 9.l9) which	cannot	be titrated	with a standard s	solution of sodium hydroxide
us	ing phenolphthale	in as indicator. This	titration	becomes p	ossible on addit	ion of glycerol due to one of
the	e following reaction	ons. Choose the corre	ect react	ion		
(a)	Boric acid beco	mes boronic acid on	reaction	n with glycer	rol	
(b)	Boric acid gives	a monoprotic tetrav	alent bo	ron ester w	ith glycerol	
(c)	Boric acid gives	a tribasic acid on re	action w	ith glycerol		
(d)) Two boric acid	molecules combine to	o give ar	n anhydride	in presence of g	lycerol

105	. An iron compound	used as heamatinic ager	nt must meet two	requirements i.e. it shou	ld be biologically
	available and be non most closely	i-irritating. Which one of	the following con	npounds meet the above t	wo requirements
	(a) Ferric chloride		(b) Ferric an	nmonium sulphate	
	(c) Ferric ammoniu	ım citrate	(d) Ferrous	thioglycollate	
106	. Iodine-131 as sodiu	ım iodide solution is use	ed as a radiophar	maceutical for diagnostic	and therapeutic
	purposes. Its usage	is dependent on the relea	se of the followin	g emissions:	
	[P] Alpha particles	[Q] Posit	rons		
	[R] Beta emission	[S] Gamn	na radiation Choo	se the correct combinatio	n of statements
	(a) R&S	(b) Q&S	(c) P&R	(d) P&S	
107	. Arrange the followin	ng Lowry-Bronsted acids	into their decreas	sing order of acidity (high	est to lowest)
	[P] C ₂ H ₅ OH	[Q] $H_3C - C \equiv CH$	[R] H ₂ O	[S] CH ₃ NH ₂	
	(a) R>P>Q>S		(b) P>R>Q>S		
	(c) $P > Q > R > S$		(d) $R > Q > P$	> S	
108	. Alkenes show typica	al electrophilic addition r	eactions. If an elec	tron withdrawing group is	s attached to one
	of the carbons bear	ing the double bond, wha	t will happen to tl	he mechanism of the addit	ion reaction
	(a) It remains elect	rophilic			
	(b) It becomes free	radical addition			
	(c) It becomes peri	cyclic reaction			
	(d) It becomes nucl	•			

- 109. Aprotic polar solvents increase the rate of SN2 reactions manifold. Enhancement in the rate of such reactions is due to which one of the following effects
 - (a) Solvation of the anion by the solvent leaving the cation unaffected
 - (b) Solvation of both of the ionic species
 - (c) Desolvation of the cation and solvation of the anion
 - (d) Solvation of the cation by the solvent leaving the anion unaffected
- 110. Five-membered heteroaromatic compounds show a much higher rate of electrophilic aromatic substitution reactions than the six-membered ones. This is due to which one of the following reasons?
 - (a) Five-membered heteroaromatic compounds have higher circulating electron density in the ring than the six-membered ones
 - (b) Five-membered heteroaromatic compounds have lower circulating electron density in the ring than the six-membered ones
 - (c) Five-membered rings are smaller in size than the six membered ones which affects their reaction rates
 - (d) Six membered heteroaromatic rings are flat while the five-membered ones are puckered
- 111. Pyridine is more basic than pyrrole. This is due to which of the following facts
 - (a) Lone pair of electrons on N in pyrrole is localized
 - (b) Lone pair of electrons on N in pyridine is localized
 - (c) Nitrogen of pyrrole has one hydrogen atom attached to it while pyridine does not haveany
 - (d) Pyridine has three double bonds while pyrrole has only two

[P	e] Brosyl	[Q] Hydroxyl	[R]	Chloro	[S] Mesyl
(a	S>R>P>Q	(b) $P > S > R > Q$	(c)	R>Q>S>P	(d) R>S>Q>P
114. De	etermine the corre	ctness or otherwise of th	ie follo	wing Asserti0n [a] an	d the Reason [r]:
As	ssertion (a): Quat	ernary ammonium pha	se tran	isfer catalysts can en	hance the rate of nucleophilic
al	iphatic substitution	reactions in biphasic sy	stems	with water soluble nuc	cleophiles.
Re	eason (r): Quater	nary ammonium comp	ounds	are highly polar, pos	sitively charged water soluble
	ompounds.				
(a) Both (a) and (r)	are true but (r) is not th	e corre	ect reason for (a)	
(b) Both (a) and (r)	are true and (r) is the c	orrect	reason for (a)	
) (a) is true (r) is f				
	l) Both (a) and (r)				
		•	ised as	primary standard fo	r standardization of perchloric
	cid solution in non-	•			
•) Potassium hydro	•	` ,	Sodium bicarbonate	
	-	rogen phosphate	, ,	Sodium methoxide	
	•				labile and inert complexes, are
		se the correct statement			
	•	•		•	rs or days in their formation
(b)		take much longer time is			
(c)	-			-	nplexes are stable in water
(d		get decomposed on mild	l heatir	ng in aqueous solution	is while inert complexes do not
445.1	decompose			1	
		mplexometric titrations	are ch	elating agents. Choos	e the correct statement about
	em	1 1 111		a late at a pome M	
		on complex should have	_	-	•
(b)	-	on complex should have		•	•
(c)		on complex should have			
	•	-		•	on in complexometric titrations
				•	is carried out: treatment of the
	•	•			llowed by addition of sulphamic basic medium to obtain a pink
				0 0	y of the drug with the optical
		rug under estimation	ngui u	correlate the qualitit	y of the drug with the optical
(a)			o) Thia	amine hydrochloride	
(c)		`	•	ohamethoxazole	
(0)	Desamediasone	(1)	այ ժակ	AMERICAN CONTRACTOR	

112. Diels-Alder reaction can be carried out in which of the following heterocyclic compounds most readily

113. In nucleophilic aliphatic substitution reactions arrange the following leaving groups in decreasing order of

(c) Furan

(d) Pyridine

(b) Thiophene

(a) Pyrrole

their leaving capacity?

- 119. Name the compound used for standardization of Karl-Fisher reagent in aquametry?
 - (a) Sodium tartrate dihydrate
- (b) Copper sulphate pentahydrate

(c) Sodium iodide

- (d) Sodium thiosulphate
- 120. In the electrochemical series, the standard reduction potentials of copper and zinc are +0.337 v and -0.763 v, respectively. If the half cells of both of these metals are connected externally to each other through an external circuit and a salt bridge, which one of the following processes will take place?
 - (a) Zinc metal electrode will start dissolving in solution while copper ions will start depositing on the copper electrode.
 - (b) Copper metal electrode will start dissolving in solution while zinc ions will start depositing on the zinc electrode
 - (c) Both of the metal electrodes will start dissolving in the solution
 - (d) Both types of ions will start depositing on their respective electrodes
- 121. In polarography. DME has a number of advantages. One of the advantages is that mercury has large hydrogen over potential. It means which one of the followings?
 - (a) Hydrogen ions get easily reduced on the DME
 - (b) Hydrogen gas gets easily reduced on the DME
 - (c) Hydrogen ions require high potential to be reduced at DME
 - (d) Water is difficult to get oxidized at DME
- 122. Following are the desirable properties of the liquid phase used in GLC EXCEPT for one of the followings.

 Identify that.
 - (a) It should be inert to the analytes
 - (b) It should have high viscosity at operating temperature
 - (c) It should have low vapour pressure at the operating temperature
 - (d) It should have a high resolving power
- 123. In HPLC analysis what type of column would you prefer
 - (a) A column with high HETP and high number of plates
 - (b) A column with low HETP and low number of plates
 - (c) A column with high HETP and low number of plates
 - (d) A column with low HETP and high number of plates
- 124. To synthesize sulphonyl urea antidiabetic, which of the following reactions can be used
 - (a) Reacting a suitably substituted sulphonyl chloride with a desired urea derivative under basic conditions
 - (b) Reacting a suitably substituted sulphonamide with a desired isocyanate derivative
 - (c) Reacting a suitably substituted sulphonic acid with adesired isocyanate derivative
 - (d) Reacting a suitably substituted sulphoxide with a desired urea derivative

125. In an optically active organic compound a chiral carbon has the following attached groups: using Sequence Rules choose the correct order of priority of the groups.

$$[P]$$
 $C \longrightarrow CH_3$ $[Q]$ $C \longrightarrow CH$ $[R]$ $CH = CH_2$ $[S]$ $C \longrightarrow CH$

Using 'Sequence Rules' choose the correct order of priority of the groups

(a) Q>P>S>R

(b) P>Q>R>S

(c) Q>P>R>S

(d) P>Q>S>R

126. The following statements are given:

- [P] Conformational isomers are interconvertible by rotation around a single bond while configurational isomers cannot be interconverted without breaking a bond.
- [Q] Configurational isomers could be optically active or optically inactive while conformational isomers are optically inactive
- [R] Geometric isomers must have a double bond in their structures
- [S] Geometric and optical isomers are the two distinct categories of configurational isomers.

Choose the correct combination of statements.

- (a) P, Q & S are true while R is false
- (b) P, R & S are true while Q is false
- (c) Q, R & S are true while P is false
- (d) P, Q & R are true while S is false

127. A carbocation will NOT show one of the following properties. Choose that

- (a) Accept an electron to give a carbene
- (b) Eliminatea proton to afford an alkene
- (c) Combine with a negative ion
- (d) Abstract a hydride ion to form an alkane

128. Determine the correctness or otherwise of the following Assertion (a) And the Reason (r):

Assertion (a): Formaldehyde and benzaldehyde both undergo Cannizaro reaction while acetaldehyde and Phenyacetaldehyde undergo Aldol condensation.

Reason(r): Aldehydes can undergo both Cannizaro as well as Aldol condensation while ketones undergo only Cannizaro reaction.

- (a) Both (a) and (r) are false
- (b) (a) is true but (r) is false
- (c) (a) is fa1se but (r) is true
- (d) Both (a) and (r) are true

129.	Cho	oose the FALSE statemen	nt for E 2 mechanism	in e	limination reactions?		
	(a)	These reactions are ac	companied by rearra	ange	ments		
	(b)	These reactions show	a large hydrogen isot	оре	effect		
	(c)	These reactions show a	a large element effect				
	(d)	These reactions are no	ot accompanied by h	ydro	gen exchange		
130.	Cho	ose the correct stateme	nt for writing the sec	iuen	ce of amino acids in a	polyp	eptide?
			_	•			al is to be written on the
	,	right hand side			ý		
	(b)	Carboxyl terminal is to	be written on the left	hand	l side while the amino t	ermin	al is to be written on the
		right hand side					
	(c)	Any of the amino acid to	erminak can be writt	en oi	n any sides but it is to b	e men	tioned by specifying the
		amino terminal and the	e carboxyl terminal ii	n abl	oreviations http://ww	w.xam	study.com
	(d)	It varies from author to	author how the seq	uenc	ce of amino acids in a p	polype	eptide is to be written
131.	BET	A-Carboline ring systen	n is present in				
	(a)	Emetine (b) Riboflavine	(c)	Deserpidine	(d) d	l-Tubocurarine
132.		ich one of the fo11owing					
	- ,	Divalent ether (-0-) and	, ,	, ,	Hydroxyl (-OH) and th	-	•
		Carboxylate (CO ₂ -) and s	-		Hydrogen(-H) and flu		
133.		he four stereoisomers o	-				
	` '	•	b) L-Threo	` ′	D-Erythro	. ,	-Threo
134.		catalytic triad in acetyl o					
		Serine, Histidine and G		` '	Serine, Arginine and		
125	. ,	Threonine, Histidine ar	-		Threonine, Arginine		
135.			c analysis involves de	tecti	on of the end poi nt o r	i the b	easis of which one of the
		owings Colour shange		(h)	Annoarance of a proc	initate	
	, ,	Colour change Neutralization reaction		, ,	Appearance of a prec Adsorption phenome	-	:
126	, ,	ich of the following state		(a)	Adsorption phenome	поп	
130.		Aliphatic protons have		nm			
		Spin quantum number	-	Pili			
	(5)	opin quantum mamber	or proton is 1				

- (c) Chemical shift describes electronic environment of a proton
- (d) Vicinal coupling constant is always higher than geminal coupling constant
- 137. In FT-IR instruments Michaelson interferometer is used in place of grating. The function of the interferometer is to act as a modulator. What do you understand by this statement?
 - (a) The function of the interferometer is to act as a monochromator
 - (b) The function of the interferometer is to convert high frequency radiations into low ones
 - (c) The function of the interferometer is to convert low frequency radiations into high ones
 - (d) The function of the interferometer is to convert frequency domain spectra into time domain spectra

138. Polyamine polystyrene resins belong to which of	rategory of ion-eychan	ge resins?
(a) Strongly Acidic Cation Exchange Resins	(b) Strongly Basic A	
(c) Weakly Acidic Cation Exchange Resins	()	<u> </u>
139. Discrepancies in potential measurements involved		
are associated with which of the following elect		me error and asymmetry potentia
(a) Hydrogen electrode	(b) Quinhydrone ele	ctrode
(c) Saturated calomel electrode	(d) Glass Electrode	eu ouc
140. Which amongst the following auxochromes pro		higher energy wave length?
(a) -CH3 (b) -NHCH3	(c) -CI	(d) -C=0
141. What is the wave number equivalent of 400 nm	` '	(4)
(a) 0.0025 cm ⁻¹ (b) 0.25 cm ⁻¹	(c) 2500 cm ⁻¹	(d) 25000 cm ⁻¹
142. Chloroformis stored in dark colored bottles bec	` '	
compound. Identify that.		
(a) CH,Cl, (b) COCl,	(c) CO	(d) CCl ₄
143. All 0f the given compounds show n* transition.	• •	4
(a) Methanol (b) Methylamine	(c) Methyl iodide	(d) Methyl bromide
144. Given are the four statements about NMR:		
[P] 13CMR is a less sensitive technique than PM	M R	
[Q] Both 13C and H have l =1/2		
[R] Precessional frequency of the nucleus is dir	ectly proportional to t	the applied magnetic field
[S] Deuterium exchange studies can be perform	med to ascertain proto	ons attached to heteroatoms.
Choose the correct combination of statements.		
(a) P, Q & R are true while S is false (b)	R, S & Q are true while	le P is false
(c) S, P & Q are true while R is false (d)	All are true	
145. Which of the following statements is WRONG?		
(a) The energy required for removing an electr	on from a molecule va	ries in the given order :
lone pair < conjugated n < non conjugated	n < a	
(b) Isotopic ratio is particularly useful for the de	tection and estimation	n of number of S, CI and Br atoms in
the compound in MS		
(c) Neutral fragments and molecules do not get	detected in the detector	or in MS
(d) The most intense peak in the MS is called the	e molecular ion peak	
146. Which one is an example of a bulk property det	ector used in HPLC?	
(a) Fluorescence detector	(b) Photo diode arra	y detector
(c) Refractive index detector	(d) UV detector	
147. The protons orthoto the nitro group in p-nitroto	oluene are examples of	which one of the Following types
(a) Chemically equivalent but magnetically non-	equivalent protons	
(b) Chemically and magnetically equivalent pro	tons	
(c) Chemically and magnetically nonequivalent	protons	
(d) Chemically nonequivalent but magnetically	equivalent protons	

- 148. A 250 kg/mL solution of a drug gave an absorbance of 0.500 at 250 nm at a path length of 10 mm. what is the specific absorbance of the drug at 250 nm?
 - (a) 0.002 cm -1 gm -1 1itre

(b) 0.002 cm ⁻¹gm⁻¹ dl

(c) 20 cm -1gm-1 1itre

(d) 20 cm -1 gm-1 dl

- 149. The peak at m/z 91in the mass spectrum for alkyl benzenes is due to which one of the followings
 - (a) Alpha fission

(b) Retro Diels-Alder rearrangement

(c) Mc-Laffartey rearrangement

(d) Tropylium ion formation

- 150. Following statements are given for a chemical reaction: Change in Gibb's free energy of the reaction has a negative value. Change in Enthalpy of the reaction has a negative value Change in Entropy of the reaction has a positive value Based on the above statements choose the correct answer.
 - (a) The reaction is spontaneous.
 - (b) The reaction is non-spontaneous.
 - (c) The reaction could either be spontaneous or non-spontaneous.
 - (d) The reaction can never be spontaneous.

End of paper

ANSWER KEY GPAT 2011

1-c	2-d	3-с	4-b/d	5-d	6-a	7-c	8-b	9-d	10-с
11-a	12-a	13-a	14-b	15-c	16-b	17-с	18-d	19-b	20-b
21-a	22-d	23-b	24-с	25-b	26-с	27-a	28-b	29-с	30-b
31-b	32-d	33-с	34-a	35-d	36-с	37-b	38-b	39-b	40-b
41-b	42-d	43-с	44-d	45-a	46-b	47-b	48-d	49-d	50-c
51-b	52-b	53-d	54-c	55-d	56-b	57-b	58-с	59-b	60-a
61-a	62-c	63-b	64-d	65-b	66-c	67-d	68-d	69-b	70-b
71-b	72-d	73-a	74-b	75-a	76-b	77-d	78-a	79-d	80-a
81-a	82-b	83-a	84-d	85-d	86-c	87-b	88-b	89-b	90-a
91-c	92-a	93-с	94-d	95-b	96-с	97-b	98-d	99-с	100-d
101-a	102-d	103-d	104-b	105-c	106-a	107-a	108-a	109-d	110-a
111-b	112-с	113-b	114-b	115-a	116-a	117-b	118-d	119-c	120-a
121-с	122-b	123-d	124-b	125-a	126-a	127-d	128-b	129-a	130-а
131-с	132-с	133-d	134-a	135-d	136-с	137-d	138-d	139-d	140-d
141-d	142-b	143-d	144-d	145-d	146-с	147-b	148-d	149-d	150-a