

click to campus

GATE 2024 Production and Industrial Engineering (PI) Question Paper

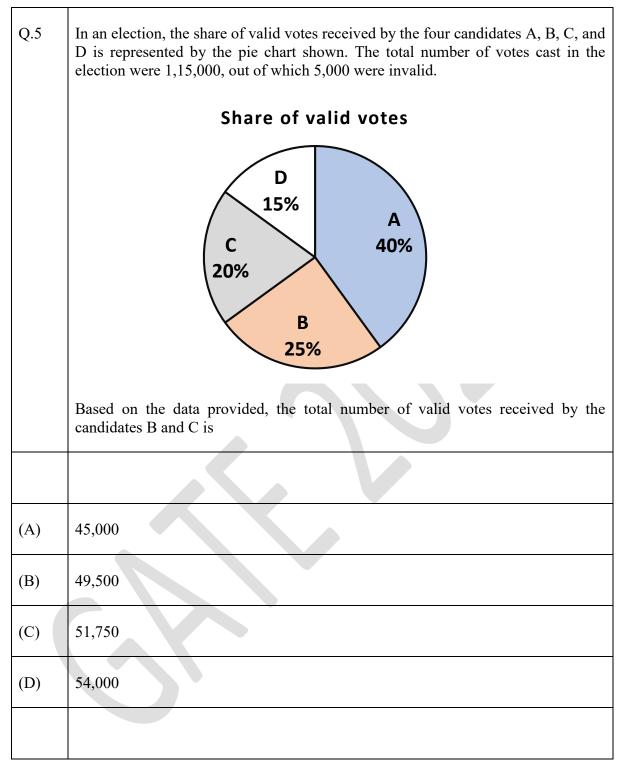
Graduate Aptitude Test in Engineering (GATE)

Download more GATE Previous Year Question Papers: Click Here

General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark Each

Q.1	If ' \rightarrow ' denotes increasing order of intensity, then the meaning of the words
	[sick \rightarrow infirm \rightarrow moribund] is analogous to [silly $\rightarrow ___ \rightarrow$ daft].
	Which one of the given options is appropriate to fill the blank?
(A)	frown
(B)	fawn
(C)	vein
(D)	vain


Q.2	The 15 parts of the given figure are to be painted such that no two adjacent parts with shared boundaries (excluding corners) have the same color. The minimum number of colors required is
(A)	4
(B)	3
(C)	5
(D)	6

Г

Q.3	How many 4-digit positive integers divisible by 3 can be formed using only the digits $\{1, 3, 4, 6, 7\}$, such that no digit appears more than once in a number?
(A)	24
(B)	48
(C)	72
(D)	12
Q.4	The sum of the following infinite series is
	$2 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{8} + \frac{1}{9} + \frac{1}{16} + \frac{1}{27} + \cdots$
(A)	11/3
(B)	7/2
(C)	13/4
(D)	9/2

Q.6 – Q.10 Carry TWO marks Each

Q.6	Thousands of years ago, some people began dairy farming. This coincided with a number of mutations in a particular gene that resulted in these people developing the ability to digest dairy milk.			
	Based on the given passage, which of the following can be inferred?			
(A)	All human beings can digest dairy milk.			
(B)	No human being can digest dairy milk.			
(C)	Digestion of dairy milk is essential for human beings.			
(D)	In human beings, digestion of dairy milk resulted from a mutated gene.			
Q.7	The probability of a boy or a girl being born is 1/2. For a family having only three children, what is the probability of having two girls and one boy?			
(A)	3/8			
(B)	1/8			
(C)	1/4			
(D)	1/2			

Q.8			invest in three mu mutual funds are g		nd C. The amounts t	hey
			Mutual fund A	Mutual fund B	Mutual fund C	
		Person 1	₹10,000	₹20,000	₹20,000	
		Person 2	₹20,000	₹15,000	₹15,000	
	Perso	n 2. The annual ra		mutual funds B a	gets is ₹500 more t nd C is 15% each. W	
(A)	7.5%					
(B)	10%					
(C)	15%					
(D)	20%					

Q.9	Three different views of a dice are shown in the figure below.
	5 4 2 4 6 3 6
	The piece of paper that can be folded to make this dice is
(A)	5 1 4 6 2 3
(B)	5 1 4 2 6 3
(C)	5 1 3 2 4 6
(D)	5 1 4 6 3 2

Q.10	Visualize two identical right circular cones such that one is inverted over the other and they share a common circular base. If a cutting plane passes through the vertices of the assembled cones, what shape does the outer boundary of the resulting cross-section make?					
(A)	A rhombus					
(B)	A triangle					
(C)	An ellipse					
(D)	A hexagon					

Q.11 – Q.35 Carry ONE mark Each

Q.11	In the Taylor series expansion of sin z around $z = 0$, the coefficient of the term z^3 is
(A)	0
(B)	1/3
(C)	-1/6
(D)	-1/3

Q.12 A vector field is given as F(x, y) = (100x + 100y) i + (-50x + 200y) j, where *i* and *j* are the unit vectors along the x and y axes in the Cartesian frame, respectively. Then the value of $\oint_C \mathbf{F}(x, y). \, \mathbf{dl}$ where $\mathbf{dl} = dx \, \mathbf{i} + dy \, \mathbf{j}$ is an elemental path taken over an anticlockwise circular contour *C* of radius r = 2 is y ► X 0 (A) -100π (B) -800π (C) -400π (D) 400π

Q.13	A uniform cantilever beam of length L and flexural rigidity EI is loaded by a force F as shown in the figure. Assuming that the Euler-Bernoulli beam theory is applicable here, the magnitude of the static deflection at the free end of the beam is
	F 2L/3 $L/3$
(A)	<i>FL</i> ³ /(6 <i>EI</i>)
(B)	14 <i>FL</i> ³ /(81 <i>EI</i>)
(C)	5 <i>FL</i> ³ /(27 <i>EI</i>)
(D)	7 <i>FL</i> ³ /(48 <i>EI</i>)
Q.14	A thin copper wire carries electric current and is insulated by putting a sleeve, of thickness t , over it. In steady state conditions, the rate of heat loss from the insulated wire per unit length is Q . Which of the following is TRUE?
(A)	Q increases monotonically with t .
(B)	Q decreases monotonically with t.
(C)	Q first increases with increase in t , and then it decreases with further increase in t .
(D)	Q first decreases with increase in t , and then it increases with further increase in t .

Q.15	The solidification time of a cube and a cylinder of the same material, produced through the same sand casting process, is found to be equal. Each side of the cube is a , and the radius and the length of the cylinder are r and $4r$, respectively. If the solidification time is governed by Chvorinov's equation, then the ratio r/a is
(A)	1/3
(B)	5/12
(C)	7/12
(D)	5/9

]	Defect in deep drawing cup		Reason	
	P Orange peel on the surface of cup		1	No blank holding force	
	Q	Wrinkling at the flange of cup	2	Very small corner radius of the punch	
	R	Tearing at the bottom corner of cup	3	Large grain size in the blank material	
	S	Earring at the top edge of the cup	4	Anisotropy of the blank material	
A)	P-3, Q-4, R-2, S-1				
B)	P-4, 0	P-4, Q-1, R-3, S-2			
C)	P-3,	P-3, Q-1, R-2, S-4			
D)	P-2, Q-3, R-1, S-4				

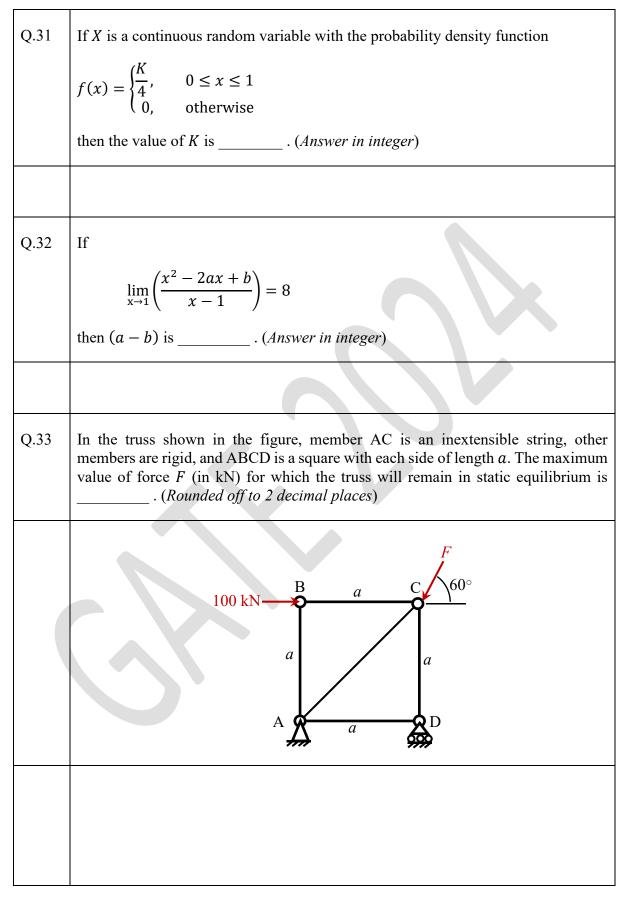
Q.17	Which one of the following pure metals has the hexagonal close packed (HCP) crystal structure at room temperature?			
(A)	Magnesium			
(B)	Iron			
(C)	Aluminium			
(D)	Copper			
Q.18	To create 12 divisions on a disc by using simple indexing and dividing head on a horizontal milling machine, choose the correct option for the rotation of the crank pin.			
(A)	3 full rotations and 5 holes on a 15-hole circle			
(B)	5 full rotations and 4 holes on a 16-hole circle			
(C)	3 full rotations and 5 holes on a 18-hole circle			
(D)	5 full rotations and 4 holes on a 20-hole circle			

Q.19	The following layout of four departments P, Q, R and S is provided as input to CRAFT (Computerized Relative Allocation of Facilities Technique). Which one of the following department pairs cannot be considered for exchange in CRAFT?				
	$ \begin{array}{c c} & & & \\ 20 m \\ & & \\ 20 m \\ & & \\ 20 m \\ & & \\ & $				
(A)	P and Q				
(B)	R and S				
(C)	P and R				
(D)	Q and R				
Q.20	Which of the following concepts is not closely inter-related with INTERCHANGEABILITY in the context of product design?				
(A)	Standardization				
(B)	Simplification				
(C)	Diversification				
(D)	Specialization				

Q.21	Which one of the following THERBLIGS does not advance the progress of the work and can be eliminated by applying the principles of motion economy?
(A)	Move
(B)	Grasp
(C)	Search
(D)	Preposition
Q.22	If work sampling is carried out using a large number of observations, then the required sample size is estimated using
(A)	Poisson distribution
(B)	Uniform distribution
(C)	Normal distribution
(D)	Exponential distribution

Q.23	Which of the following is NOT an assumption of a linear programming problem?
(A)	Proportionality
(B)	Additivity
(C)	Integrality
(D)	Certainty
Q.24	In a single server Markovian queuing system, if the customers arrive following the Poisson distribution, then the inter-arrival time follows
(A)	Poisson distribution
(B)	Uniform distribution
(C)	Exponential distribution
(D)	Binomial distribution

TPM)?				
It allows operators to perform reactive maintenance on the machines.				
It is consistent with the Just-in-Time (JIT) system.				



Q.27	In a complex function f(x, y) = u(x, y) + i v(x, y),
	<i>i</i> is the imaginary unit, and <i>x</i> , <i>y</i> , $u(x, y)$ and $v(x, y)$ are real.
	If $f(x, y)$ is analytic then which of the following equations is/are TRUE?
(A)	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$
(B)	$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$
(C)	$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$
(D)	$\left(\frac{\partial u}{\partial x}\right)\left(\frac{\partial v}{\partial x}\right) + \left(\frac{\partial u}{\partial y}\right)\left(\frac{\partial v}{\partial y}\right) = 0$
Q.28	For a mild steel specimen subjected to uniaxial tensile load, which of the following is/are TRUE?
(A)	The engineering stress-strain curve is linear within the elastic limit.
(B)	The specimen fails in cup and cone type fracture.
(C)	The true stress is always more than the engineering stress at any finite strain.
(D)	The specimen does not regain its original dimensions after complete unloading from an initial stress above the yield stress.
	<u> </u>

Q.29	Which among the following is/are TRUE for friction stir welding (FSW) process					
(A)	It can be used to produce lap, butt and tee joints.					
(B)	A non-consumable rotating tool with shoulder and pin is used to melt the work- piece material.					
(C)	Retreating side of the weld is where the linear velocity vector at a point on that side of the rotating tool and the welding direction are opposite.					
(D)	Advancing side of the weld is where the linear velocity vector at a point on that side of the rotating tool and the welding direction are opposite.					
Q.30	Which of the following areas is/are supply chain decision(s)?					
(A)	Location					
(B)	Inventory					
(C)	Distribution					
(D)	Machine scheduling					

Q.34	An offset slider-crank mechanism is shown in the figure. If the length $l = 10$ cm, then the stroke length (in cm) of the slider is (<i>Rounded off to 1 decimal place</i>)
	3l l l l
Q.35	A blank of 100 mm diameter is to be cut out of a 2 mm thick sheet through blanking operation. If the radial clearance between the punch and die is 6% of the sheet thickness then the diameter (in mm) of the punch is (Rounded off to 2 decimal places)

Q.36 – Q.65 Carry TWO marks Each

Q.36	If $\mathbf{A} = \begin{bmatrix} a & b \\ c & -a \end{bmatrix}$ is a matrix such that $\mathbf{A}^2 = \mathbf{I}$, where \mathbf{I} is an identity matrix, then which of the following is TRUE?
(A)	$1 + a^2 + bc = 0$
(B)	$1 - a^2 + bc = 0$
(C)	$1-a^2-bc=0$
(D)	$1 + a^2 - bc = 0$
Q.37	In the iron-carbon equilibrium phase diagram, the temperature and composition of the eutectoid point are 727 °C and 0.77 weight % carbon, respectively. If a steel specimen with 1.2 weight % carbon is cooled from 1000 °C to the room temperature, then the fraction of pro-eutectoid cementite phase in the steel is (Rounded off to 2 decimal places)
(A)	0.07
(B)	0.93
©	0.18
(D)	0.12

Q.38	For polymers, match each process with the most suitable application listed.					
	Process			Application		
	Р	Extrusion	1	Producing complex parts with close tolerance		
	Q	Injection molding	2	Producing thermosetting plastic components		
	R	Blow molding	3	Producing long uniform sections		
	S	Compression molding	4	Producing hollow shapes		
(A)	P-3, C	Q-1, R-2, S-4				
(B)	P-2, Q	Q-3, R-4, S-1				
©	P-4, Q	Q-2, R-1, S-3		, ,		
(D)	P-3, C	Q-1, R-4, S-2				

Q.39	In a forming operation, the plastic deformation of a steel specimen starts under plane stress condition, where the principal stresses are $\sigma_1 = 200$ Mpa and $\sigma_2 = 100$ Mpa. If the steel specimen follows von-Mises yield criterion, then the uniaxial tensile yield strength (in Mpa) of this steel material is (Rounded off to 1 decimal place)
(A)	173.2
(B)	200.0
(C)	100.0
(D)	223.6

Q.40	Match the configurations of the listed 3 degrees-of-freedom industrial robots with the type of joints.				
		Configuration	Type of joints		
	Р	Cartesian	1	One prismatic and two rotary	
	Q	Cylindrical	2	Three rotary	
	R	Spherical	3	Two prismatic and one rotary	
	S	Articulated	4	Three prismatic	
(A)	P-3, C	Q-1, R-2, S-4			
(B)	P-4, Q	Q-3, R-1, S-2			
(C)	P-4, C	Q-2, R-1, S-3			
(D)	P-3, C	Q-1, R-4, S-2			

Q.41	A project has six activities and the precedence relationship among them is shown in the table.						
		Activity	Precedent activities				
		А	None				
		В	None				
		С	None				
		D	A, B				
		Е	B, C				
		F	A, B				
			$\overline{\mathbf{O}}$				
(A)	0						
(B)	1						
(C)	2						
(D)	3						

Q.42	Consider the following linear programming problem with two decision variables x_1 and x_2 . There are three constraints involving resources R1, R2 and R3 as indicated.				
	Maximize $Z = 6x_1 + 5x_2$	$Maximize Z = 6x_1 + 5x_2$			
	Subject to				
	$2x_1 + 5x_2 \le 40$ R1				
	$2x_1 + x_2 \le 22 \qquad \qquad \mathbf{R}2$				
	$x_1 + x_2 \le 13 \qquad \qquad \text{R3}$				
	$x_1 \ge 0, \qquad x_2 \ge 0$				
	The optimal solution of the problem is: $x_1 = 9$ and $x_2 = 4$.				
	For which one of the following options, the shadow price have non-zero value(s)?	For which one of the following options, the shadow price of the resource(s) will have non-zero value(s)?			
(A)	R1, R2 and R3				
(B)	R1 and R2				
(C)	R2 and R3				
(D)	R1 only				

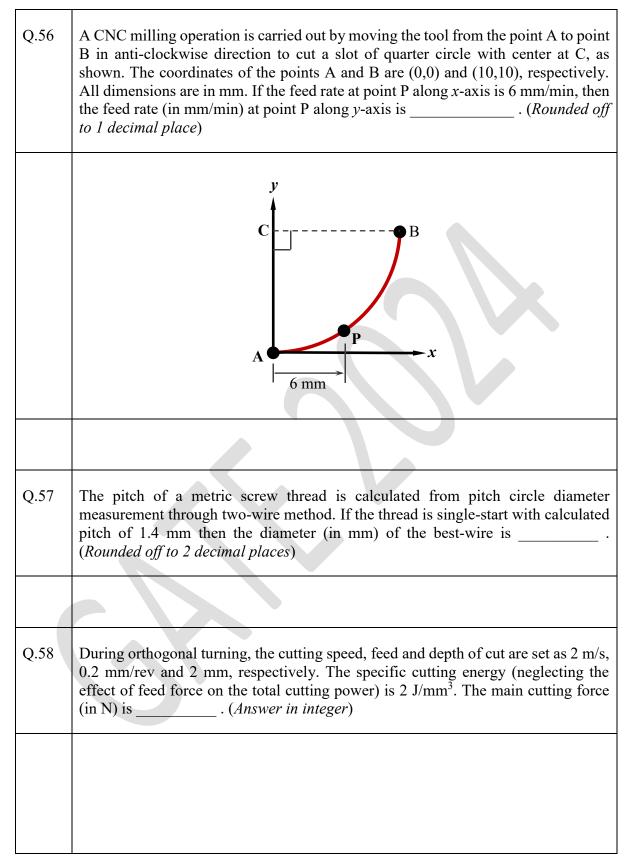
Г

Т

Q.43	Choose the item(s) which is/are required to make an eccentric hole on a disc, as shown, using a lathe.		
	Hole Disc		
(A)	Single point cutting tool		
(B)	Four jaw chuck		
(C)	Drill bit		
(D)	Three jaw chuck		
Q.44	Which of the following statement(s) is/are TRUE for a given acceptance sampling plan?		
(A)	Type II error decreases with an increase in type I error.		
(B)	The probability of rejecting a good quality lot is producer's risk.		
(C)	Type II error decreases with a decrease in sample size.		
(D)	The probability of rejecting a good quality lot is consumer's risk.		

Q.45	Seven cards numbered 1 to 7 are placed in a box. After thoroughly mixing all the cards, one card is drawn at random. If it is known that the number on the card drawn is odd, then the probability that the number on the card drawn is greater than 4 is%. (<i>Answer in integer</i>)				
Q.46	The following differential equation governs the evolution of variable $x(t)$ with time $t, t \ge 0$. $\frac{d^2x}{dt^2} + 4x = e^{-t}$				
	Given the initial conditions $x = 0$ and $\frac{dx}{dt} = 0$ at $t = 0$, the value of x at $t = \pi/8$ is (Rounded off to 3 decimal places)				
Q.47	The values of function $y(x)$ at discrete values of x are given in the table. The value of $\int_0^4 y(x)dx$, using Trapezoidal rule is (Rounded off to 1 decimal place)				
	x 0 1 2 3 4				
	y(x) 1 3 6 9 12				

Q.48	An irrigation pump is used to draw water from a pond. One end of a 5.05 cm diameter hose pipe is connected to the outlet of the pump at 1.02 m below the surface level, and just after the pump, the static gauge pressure and flow rate of the water are 50 kPa and 8 kg/s, respectively. The pumped water is discharged at the ground level through a nozzle. Assume that the flow through the hose pipe and nozzle is steady and laminar, and frictional and viscous losses are negligible. The density of water is 1000 kg/m ³ and the acceleration due to gravity is 9.81 m/s ² . If the static pressure at the nose/exit of the nozzle just reduces to atmospheric pressure then the nose diameter (in cm) of the nozzle is (Rounded off to 2 decimal places)			
Q.49	In an air-standard Otto cycle, the pressure and temperature of air just before the compression stroke are 200 kPa and 26.85 °C, respectively. The combustion process is assumed to be a constant volume process, where 1.02 MJ/kg heat is added. The cycle efficiency is 50%. The adiabatic index γ and specific heat at constant volume c_v can be considered to be constant during the process (corresponding values taken at the mean cycle temperature). Assuming that the ideal gas law is applicable, $\gamma = 4/3$ and $c_v = 0.85$ kJ/kg-K, the			
	maximum pressure (in MPa) reached during the cycle is (Rounded off to 1 decimal place)			
Q.50	A metallic cylindrical pressure vessel, used to store compressed air in a plant, has 1 m mean radius and 4 mm wall thickness. The maximum allowable normal and shear stresses in the cylindrical portion of the vessel are 100 MPa and 40 MPa, respectively. Considering only these data in the design, the maximum allowable internal gauge pressure (in MPa) of the compressed air is (<i>Rounded</i> <i>off to 2 decimal places</i>)			



Q.51	A flat belt drive with pulley of $r = 20$ cm radius is designed to transmit 6.283 kW power at 600 RPM. In the figure, τ is the corresponding torque. If the coefficient of static friction between the belt and the pulley is 0.3, then the minimum value of the tightening force <i>F</i> (in kN) required to prevent the belt slip is (<i>Rounded off to 2 decimal places</i>)
	$T_1 \underbrace{r_1}_{r_2} \underbrace{r_1}_{r_2}$
Q.52	Mild steel plates are welded to make butt joints by arc welding with 85% heat transfer efficiency ignoring other losses. The first weld joint is made by selecting arc voltage of 30 V and current of 180 A with a welding speed of 6 mm/s. Using identical plates, a second weld joint is made with the same arc voltage and a welding speed of 8 mm/s. If both the welds have the same heat input, then the welding current (in A) for the second weld joint is (<i>Answer in integer</i>)
Q.53	In a single pass cold rolling operation, a flat plate is reduced to a thickness of 3 mm. In this operation, two rolls of diameter 400 mm each are rotating in opposite direction at 300 RPM, and the elastic deflection of these rolls is negligible. The angle of bite is 10°. If the neutral point is present at an angle of 7° from the exit side, then the thickness of the plate (in mm) at the neutral point is (<i>Rounded off to 1 decimal place</i>)

Q.54	In a sand mold, a sprue of height $h_2 = 200$ mm is to be provided for maintaining the molten metal flow rate of 10^6 mm^3 /s. The height of liquid column above the point 2 is kept constant at $h_c = 25$ mm. The cross-sectional areas of the sprue a points 2 and 3 are A_2 and A_3 , respectively. The points 1 and 3 are at the atmospheric pressure. Assuming the gauge pressure at point 2 to be zero as the limiting case to prevent aspiration effect, the ratio A_3/A_2 is (Rounded off to 2 decimal places)				
	$\begin{array}{c c} & & & & \\ & 1 \\ & & & \\ & 2 \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$				
Q.55	The following data are given in relation to turning operation of a cylindrical workpiece.				
	Diameter of the workpiece = 160 mm, length of the workpiece = 190 mm, cutting velocity = 80π m/min, and tool feed = 0.2 mm/rev.				
	Assuming the approach and the overrun of the tool to be 5 mm each, the machining time (in minutes) is (<i>Answer in integer</i>)				

Q.59	Electro-chemical machining is performed on a flat copper workpiece. If the material removal rate is 2 cm ³ /min throughout the process, then the required current (in A) is (<i>Rounded off to 1 decimal place</i>) Copper properties: Melting point = 1085 °C, density = 9 g/cm ³ , gram atomic weight = 63, and valency of dissolution = 2 Faraday's constant = 96500 C Stefan-Boltzmann constant = 5.67×10^{-8} W/m ² -K ⁴
Q.60	A repairable machine operated for 2400 hours in a year and for that year the machine broke down 8 times. The mean time to repair including waiting time is found to be 20 hours for that year.
	If the mean time to repair including waiting time could have been reduced to 10 hours for that year, then the improvement in the availability of that machine would be%. (<i>Rounded off to 2 decimal places</i>)
Q.61	In a time study, the average time taken for packaging a product in a warehouse by a worker with 120% performance rating is observed as 9 minutes. Assuming an allowance of 10% of the standard time, the standard time (in minutes) for packaging is (<i>Answer in integer</i>)
Q.62	An assembly line consists of three work stations (S1, S2 and S3) in series to assemble a toy. The times required to perform tasks at these stations are 6, 4 and T minutes, respectively. If the efficiency of the assembly line in the steady state is 75%, then the maximum value of T (in minutes) is (Answer in integer)

Q.63	A company purchased two machines, Machine A and Machine B, at the same time. The purchase price, estimated useful life and the estimated salvage value of the two machines are given in the table.					
			Machine A	Machine B		
	Purcha	se price	INR 20,000	INR 15,000		
	Estima	ted useful life	10 years	20 years		
	Estima	ted salvage value	INR 5,000	INR 5,000		
	Using the straight- (in INR) between th five years is	ne value of Machin	ne A and the valu			
Q.64	A company orders an item using the classical economic order quantity formula. If the ordering cost per order is increased by 20% and the demand per unit time is also increased by 20%, then the time between orders increases (in %) by (<i>Answer in integer</i>)					
Q.65	Five jobs A, B, C, D and E are available at time $t = 0$ for processing at a machine, and their processing times are listed.					
	Job	A I	3 C	D	Е]
	Processing time (in days)	9 (5 4	5	8	
	If the jobs are processed using the shortest processing time (SPT) rule, the average flow time (in days) is (<i>Rounded off to 1 decimal place</i>)					