

click to campus

GATE 2024 Chemical Engineering (CH) Question Paper

Graduate Aptitude Test in Engineering (GATE)

Download more GATE Previous Year Question Papers[: Click Here](https://www.collegebatch.com/exams/gate-important-downloads?utm_source=pdf)

٦

General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark Each

Q.6 – Q.10 Carry TWO marks Each

 \mathbf{I}

٦

Q.11 – Q.35 Carry ONE mark Each

Q.14 A homogeneous azeotropic distillation process separates an azeotropic AB binary feed using a heavy entrainer, *E*, as shown in the figure. The loss of *E* in the two product streams is negligible so that *E* circulates around the process in a closedcircuit. For a distillation column with fully specified feed(s), given operating pressure, a single distillate stream and a single bottoms stream, the steady-state degrees of freedom equals 2. For the process in the figure with a fully specified *AB* feed stream and given column operating pressures, the steady-state degrees of freedom equals

Q.17 Consider the steady, uni-directional diffusion of a binary mixture of A and B across a vertical slab of dimensions $0.2 \text{ m} \times 0.1 \text{ m} \times 0.02 \text{ m}$ as shown in the figure. The total molar concentration of A and B is constant at 100 mol m⁻³. The mole fraction of A on the left and right faces of the slab are maintained at 0.8 and 0.2, respectively. If the binary diffusion coefficient $D_{AB} = 1 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}$, the molar flow rate of A in mol s⁻¹, along the horizontal *x* direction is \mathcal{X} 0.20_m 0.10_m 0.02 m (A) $\big| 6 \times 10^{-4}$ (B) $\big| 6 \times 10^{-6}$ (C) 3×10^{-6} (D) 3×10^{-4}

Г

 $\overline{}$

 $\overline{}$

 r

T

Q.36 – Q.65 Carry TWO marks Each

 $\overline{}$

 r

 \top

Q.57 Ethylene obeys the truncated virial equation-of-state

$$
\frac{PV}{RT} = 1 + \frac{BP}{RT}
$$

where *P* is the pressure, *V* is the molar volume, *T* is the absolute temperature and *B* is the second virial coefficient. The universal gas constant $R = 83.14$ bar cm³ mol⁻¹K⁻¹. At 340 K, the slope of the compressibility factor vs. pressure curve is -3.538×10^{-3} bar⁻¹. Let G^R denote the molar residual Gibbs free energy. At these conditions, the value of $\left(\frac{\partial G^R}{\partial P}\right)_T$, in cm³ mol⁻¹, rounded off to 1 decimal place, is

Q.58 A metallic spherical particle of density 7001 kg m⁻³ and diameter 1 mm is settling steadily due to gravity in a stagnant gas of density 1 kg m⁻³ and viscosity 10^{-5} kg m⁻¹ s⁻¹. Take $g = 9.8$ m s⁻². Assume that the settling occurs in the regime where the drag coefficient C_D is independent of the Reynolds number, and equals 0.44. The terminal settling velocity of the particle, in m s^{-1} , rounded off to 2 decimal places, is

 $Q.63$ Consider the surge drum in the figure. Initially the system is at steady-state with a hold-up $\bar{V} = 5$ m³, which is 50% of full tank capacity, V_{full} , and volumetric flow rates $F_{in} = F_{out} = 1 \text{ m}^3 \text{ h}^{-1}$. The high hold-up alarm limit $V_{high} = 0.8 V_{full}$ while the low hold-up alarm limit $V_{low} = 0.2 V_{full}$. A proportional (P-only) controller manipulates the outflow to regulate the hold-up V as $F_{out} = K_c(V - \overline{V}) + \overline{F}_{out}$. At $t = 0$, F_{in} increases as a step from 1 m³ h⁻¹ to 2 m³ h⁻¹. Assume linear control valves and instantaneous valve dynamics. Let K_c^{min} be the minimum controller gain that ensures *V* never exceeds V_{high} . The value of K_c^{min} , in h^{-1} , rounded off to 2 decimal places, is _________

Q. 64 | A PD controller with transfer function G_c is used to stabilize an open-loop unstable process with transfer function G_p , where

$$
G_c = K_c \frac{\tau_D s + 1}{\left(\frac{\tau_D}{20}\right)s + 1}, G_p = \frac{1}{(s - 1)(10s + 1)}
$$

and time is in minutes. From the necessary conditions for closed-loop stability, the maximum feasible value of τ_D , in minutes, rounded off to 1 decimal place, is

Q.65 Consider a tray-column of diameter 120 cm. Each downcomer has a cross-sectional area of 575 cm². For a tray, the percentage column cross-sectional area not available for vapour flow due to the downcomers, rounded off to 1 decimal place, is $\overline{}$