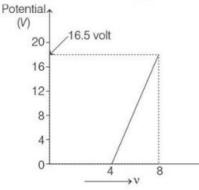


click to campus

BITSAT 2022 Question Paper with Answer Key

Birla Institute of Technology and Science Admission Test


Download BITSAT Previous Year Question Papers & Syllabus - <u>Click Here</u>

BITSAT - Paper 2022

Solved Paper

Question 1

The stopping potential (V $_0$) versus frequency (v) of a graph for photoelectric effect in a metal. From the graph, the planck's constant (h) is.

Options:

A. 6.60×10^{-34} J - s B. 6.69×10^{-34} J - s C. 6.62×10^{-34} J - s D. 6.63×10^{-34} J - s

Answer: A

Solution:

$$\begin{split} & \text{Solution:} \\ & eV_0 = h(v - v_0) = hv - hv_0 \\ & V_0 = \left(\frac{h}{e}\right)v - \left(\frac{h}{v}\right)v_0 \dots \dots (i) \\ & \text{From Eq. (i), it follows that the slope of the graph is } \frac{h}{e}. \\ & \text{Therefore,} \\ & h = e \times slope = 1.6 \times 10^{-19} \times \frac{165 - 0}{(8 - 4) \times 10^{15}} \\ & = 16 \times 10^{-19} \times \frac{16.5}{4} \times 10^{15} = 6.6 \times 10^{-34} \text{J} - \text{s}. \end{split}$$

Question 2

In a resonance column first and second resonance are obtained at depths 24 cm and 78 cm the third resonance will be obtained at depth.

Options:

- A. 160 cm
- B. 132 cm
- C. 131 cm
- $D.\ 152\,cm$

Answer: B

Solution:

Solution:

Given, first resonance column at deoth, $l_1 = 24$ cm Second resonance column at depth, $l_2 = 78$ cm Third resonance column at depth, $l_3 = ?$ Asl₁ + x = $\frac{\lambda}{4} = 24$(i) $l_2 + x = \frac{3\lambda}{4} = 78$(ii) $l_3 + x = \frac{5\lambda}{4}$(iii) From Eqs. (i) and (ii), $x = \frac{l_2 - 3l_1}{2} = \frac{78 - 3(24)}{2} = 3$(iv) substituting l_1 and x value, we get $l_3 = 5(24) + 4(3)$ $\Rightarrow l_3 = 132$ cm.

Question 3

A submarine A travelling at $17\frac{m}{s}$ is being chased along the line of its velocity by another submarine B travelling at $34\frac{m}{s}$. B sends a sonar signal of 600H z to detect A and receives a reflected sound of frequency v. The of v is

[Speed of sound in water $= 1500 \text{ms}^{-1}$]

Options:

A. 613.7 Hz

B. 6137 Hz

C.62 Hz

D. 539 Hz

Answer: A

Solution:

Solution:

Given, velocity of submarine A, $v_{\rm A}17m$ / s Velocity of Submarine B, $v_{\rm B}$ = 34m / s Signal sent by submarine B is detected by submarine A can be shown as $\begin{array}{c} 34 \text{ m/s} & 17 \text{ m/s} \\ \hline \\ B & A \\ \end{array}$ Frequency of the signal, $f_0 = 600 \text{H z}$ speed of sound in water $v_s = 1500 \text{ms}^{-1}$ Frequency received by submarine A is $f_1 = \left(\frac{v_s - v_A}{v_s - v_B}\right) f_0 = \left[\frac{1500 - 17}{1500 - 34}\right] \times 600 \text{hz}$ $f_1 = \frac{1483}{1466} \times 600 \dots (i)$ Frequency received by submarine is $f_2 = \left(\frac{v_s + v_B}{v_{svA}}\right) f_1$ Substituting given values and f_1 value from Eq. (i), we get $f_2 = \left(\frac{1500 + 34}{1500 + 17}\right) \times \left[\frac{1483}{1466} \times 600\right]$ $f_2 = 1.0112 \times 1.0115 \times 600$ $f_2 = 613.7 \text{H z}.$

Question 4

Transverse waves of the same frequency are generated in two steel wires A and B. The diameter of A is twice that of B and the tension in A is half that in B. The ratio of the velocities of the waves in A and B is

Options:

A. 1:2

B. 1 : $\sqrt{2}$

C. 1 : $2\sqrt{2}$

D. 3 : $2\sqrt{2}$

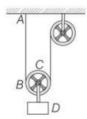
Answer: C

Solution:

Solution:

The velocity if transverse waves is given by $v = \sqrt{\frac{T}{m}} \text{ where, } T = \text{Tension and } m = \text{mass per unit}$ length of the wire. If r is the radius if the wire and ρ its density then, $m = \pi r^2 \rho$ $\therefore v = \sqrt{\frac{T}{m}} = \sqrt{\frac{T}{\pi r^2 \rho}}$ $\therefore v_A = \frac{\sqrt{T_A}}{r_A \sqrt{\pi \rho}}$ and $v_B = \frac{\sqrt{T_B}}{r_B \sqrt{\pi \rho}}$

Now, $\frac{v_a}{v_B} = \sqrt{\frac{T_A}{T_B}} \cdot \frac{r_B}{r_A}$

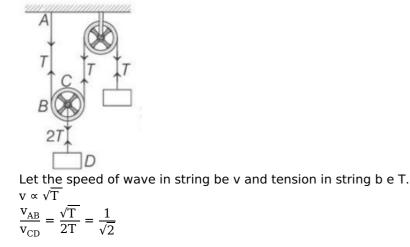

 $\because r_{A} = 2r_{B} \text{ and } T_{A} = \frac{1}{2}T_{B}$ Hence, $\frac{v_{A}}{v_{B}} = \frac{1}{2\sqrt{2}}$

Question 5

In the diagram shown below, both the strings AB and CD are made of same material and have same cross-section. The pulleys are light and fictionless. If the speed of wave in string AB is v_1 and in CD is v_2 , then $\frac{v_1}{v_2}$

Options:

B. $\sqrt{2}$


C. 2

D. $\frac{1}{\sqrt{2}}$

Answer: D

Solution:

Question 6

What will be the acceleration due to gravity at a depth d , where g is

acceleration due to gravity on the surface of earth?

Options:

A. $\frac{g}{\left[1 + \frac{d}{R}\right]^2}$ B. $g\left[1 - \frac{2d}{R}\right]$ C. $\frac{g}{\left[1 - \frac{d}{R}\right]^2}$ D. $g\left[1 - \frac{d}{R}\right]$

Answer: D

Solution:

Solution:

Acceleration due to gravity at the surface of earth, $g = G \frac{M}{R^2} = \frac{4}{3} \pi \rho G R....(i)$ $\left[\because M = \frac{4}{3} \pi R^3 \rho \right]$ Where, ρ = density of earth. Acceleration due to gravity at depth d from the surface of earth, $g' = \frac{4}{3} \pi \rho G (R - d)....(ii)$ From Eqs. (i) and (ii), we get $g' = g \left[1 - \frac{d}{R} \right]$

Question 7

A direct current of 6A is superimposed on an alternating current $I = 10 \sin \omega t$ flowing through a wire. The effective value of the resulting current will be

Options:

A. $5\sqrt{2}$

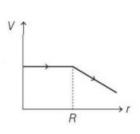
B. 5√3

C. 9.27

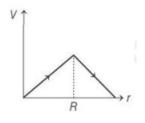
D. 8.37

Answer: C

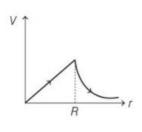
Solution:

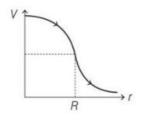

Solution: Given, I = $6 + 10 \sin \omega t$ $I_{eff} = \left[\frac{\int_{0}^{T} I^{2} dt}{\int_{0}^{T} dt}\right]^{\frac{1}{2}} = \left[\frac{1}{T}\int_{0}^{T} (6 + 10 \sin\omega t)^{2} dt\right]^{\frac{1}{2}}$ $= \left[\frac{1}{T}\int_{0}^{T} (36 + 120 \sin\omega t + 100 \sin^{2}\omega t) dt\right]^{\frac{1}{2}}$ But as, $\frac{1}{T}\int_{0}^{T} \sin\omega t dt = 0$ and $\frac{1}{T}\int_{0}^{T} \sin^{2}W t = \frac{1}{2}$ $\Rightarrow I_{eff} = \left[36 + \frac{1}{2} \times 100\right]^{\frac{1}{2}} = 0.97$ Thus, $I_{eff} = 9.27A$.

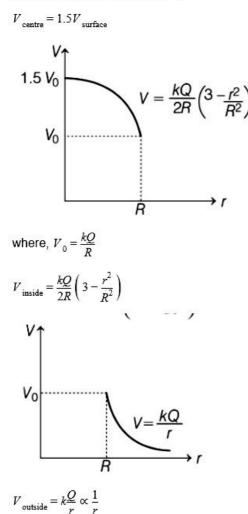
Question 8


Which one of the following graphs represents the variation of electric potential with distance r from the centre of a non-conducting charged sphere of radius R ?

Options:


A.


Β.



Solution:

Solution:

Electric potential at centre R = 0

Question 9

For an insulator, the forbidden energy gap is

Options:

A. Zero

- B. 1 eV
- C. 2 eV
- D. 5 eV

Answer: D

Solution:

Solution:

For an insulator, E $_g$ > 3eV, that is why electron transition from valence band to conduction band is not possible. For semiconductor E $_g$ is 0.2eV to 0.3eV, while for metals E $_g$ > 5eV.

Question 10

A machine gun fires 300 bullets per min if the mass of each bullet is 10g and the velocity of the bullets is $600ms^{-1}$, the power (in kW) of the gun is

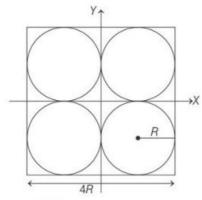
Options:

A. 43200

B. 9

C. 72

D. 7.2


Answer: B

Solution:

Solution: Work done by the gun = total kinetic energy of the bullets = $n\frac{1}{2}mv^2 = 300 \times \frac{1}{2} \times 10 \times 10^{-3} \times (600)^2$ = 150 × 10 × 10⁻³ × 600 × 600 Power of gun = $\frac{\text{work done}}{\text{Time taken}}$ = $\frac{150 \times 10 \times 10^{-3} \times 600 \times 600}{60\text{ s}}$ = 9kW (\because 1 minute = 60 seconds)

Question 11

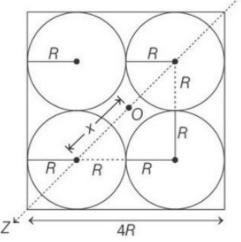
Four holes of radius 5cm are cut from a thin square plate of 20cm and mass 1kg. The moment of inertia of the remaining portion about Z -axis is

Options:

A. $15 \text{ kg} - \text{m}^2$

B. $0.37 \,\text{kg} - \text{m}^2$

C. $0.0017 \text{ kg} - \text{m}^2$


D. $0.08 \text{ kg} - \text{m}^2$

Answer: C

Solution:

Solution:

Area mass density, $\sigma = \frac{M}{16R^2}$ (: Area = $4R \times 4R = 16R^2$) Mass of each hole $m_1 = \sigma \pi R^2 = \frac{M}{16R^2} \pi R^2 = \frac{\pi M}{16}$ Distance between centre of plate and centre of hole $x = \frac{\sqrt{(2R)^2 + (2R)^2}}{2} = \frac{2\sqrt{2}R}{2}$

Moment of inertia of one hole at about Z-axis I₁ = $\frac{1}{2}m_1R^2 + m_1x^2 = \frac{5\pi}{32}MR^2$ Moment of inertia of whole plate about Z-axis, I = $\frac{M(4R)^2}{6} = \frac{8}{3}MR^2$ Required moment of Inertia I₀ = I - 4I₁, = $\left[\frac{8}{3} - 4\left(\frac{5\pi}{32}\right)\right]MR^2 = \left[\frac{8}{3} - \frac{5\pi}{8}\right]MR^2$ Given, R=5cm and M=1kg So, I₀ $\left[\frac{8}{3} - \frac{5\pi}{8}\right]1 \times 25 \times 10^{-4} = 0.0017kg - m^2$

Question 12

a particle of mass m is projected with velocity v at an angle θ with the horizontal. At its highest point, it explodes into two pieces of equal mass, one of the piece continue to move on the original trajectory, then the velocity of second piece is.

Options:

A. $2v\cos\theta$

B. $v\cos\theta$

C. $3v\cos\theta$

D. $\frac{v}{2}\cos\theta$

Answer: B

Solution:

Solution: According to the law of conservation of linear momentum at the highest point, $mv\cos\theta = \frac{m}{2}(v\cos\theta) + \frac{m}{2}v'$ $\Rightarrow mv\cos\theta = \frac{m}{2}v\cos\theta = \frac{m}{2}v'$ $\Rightarrow v' = 2\left(v\cos\theta - \frac{v\cos\theta}{2}\right) = v\cos\theta$

Question 13

In the circuit shown assume the diode to be ideal. When V $_{\rm i}$ increases from -2V to 6V, the change in current is (in mA)

Vi 250Ω +1V

Options:

A. Zero

B. 20

C. $\frac{25}{8}$

D. 32

Answer: B

Solution:

Solution:

I _{initial} = 0 for V_i \leq +1V This diode conduct only beyond V_i = +1V I _{final} = $\frac{5}{250}$ = 0.02A So, change in I = 0.02A = 20mA

Question 14

The de-Broglie wavelength of an electron moving with a velocity $\frac{c}{3}(c = 3 \times 10^8 \text{m} / \text{ s})$ is equal to the wavelength of photon. The ratio of the kinetic energies of electron and photon is

Options:

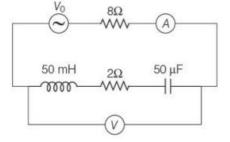
A. 1 : 4

B. 1 : 3

C. 1 : 2

D. 2 : 1

Answer: B


Solution:

Solution:

The de-Brogile wavelength, $\lambda = \frac{h}{mv}$ Here, $\lambda_e = \frac{h}{m_e \frac{c}{3}}$ and $\lambda_p = \frac{h}{m_p c}$ Given, $\lambda_e = \lambda_p$ So, $\frac{h}{m_e \frac{c}{3}} = \frac{h}{m_p c}$ $\Rightarrow \frac{m_e}{m_p} = 3$ Ratio of K E $= \frac{K_e}{K_p} = \frac{\frac{1}{2}m_e v_e^2}{\frac{1}{2}m_p v_p^2} = \frac{1}{3} \left(\because \frac{m_e}{m_p} = 3, v_e = \frac{c}{3} \text{ and } v_p = c \right)$

Question 15

In the circuit shown in the figure, the AC source gives a voltage $V = 20\cos(2000t)$ neglecting source resistance, the voltmeter and ammeter reading will be

Options:

A. 0V, 0.47A

B. 2.82V, 1.41A

C. 1.41V, 0.47A

D. 1.5V, 8.37A

Answer: B

Solution:

Solution:

Given, $R_1 = 8\Omega$ $R_2 = 2\Omega$

L = 5mH

 $\begin{array}{l} C = 50 \mu F \\ \text{and } V_0 = 20 \text{cos}(2000\text{t}) \\ \text{Independence, } Z = \sqrt{R^2 + (X_L - X_C)^2} \\ \text{As, here, } X_L = \omega L = 2000 \times 5 \times 10^{-3} = 10\Omega \\ \text{Similarly, } X_L = \frac{1}{\omega} C = \frac{1}{2000 \times 50 \times 10^{-6}} = 10\Omega \\ \because X_L = X_C, \text{ Hence, } i_{max} = \frac{V_0}{Z} = \frac{20}{(8+2)} = 2\text{A} \\ \text{Hence, } i_{rms} = \frac{i_{max}}{\sqrt{2}} = \frac{2}{\sqrt{2}} = 1.41\text{A} \\ \text{and } V = R_2 i_{rms} = 1.41\text{A} \times 2 \\ = 282\text{V} \end{array}$

Question 16

An electromagnetic wave is propagating along X -axis. At x = 1 cm and t = 18 s, its electric vector |E| = 8V / m, then the magnitude of its magnetic vector is

Options:

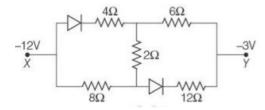
A. 266×10^{-8}

B. 3×10^{-7}

C. 3.14×10^{-8}

D. 3.16×10^{-7}

Answer: A


Solution:

Solution: As we know that, $\frac{E}{B} = c$ so, $B = \frac{E}{c} = \frac{8}{3} \times 10^8 = 266 \times 10^{-8}$

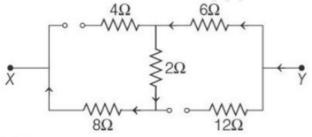
Question 17

In the following circuit the equivalent resistance between $X\,$ and $Y\,$ is Ω

Options:

B. 12

C. 16


D. 20

Answer: C

Solution:

Solution:

According to the given figure X is at lower potential w.r.t γ . Hence, both diodes are in revere biasing, so, equivalent citcuit can be redrawn as follows

Equivalent resistance between X and Y $R_{_{eq}}$ = 8 + 2 + 6 = 16Ω

Question 18

A monoatomic gas of molar mass m is kept in a insulated container. Container is moving with velocity v. If the container is suddenly stopped, then the change in the temperature of the gas is

Options:

A.	$\frac{mv^2}{4R}$
B.	$\frac{mv^2}{2R}$
C.	$\frac{mv^2}{R}$
	Э

D. $\frac{mv^2}{3R}$

Answer: D

Solution:

Solution:

Let the insulated container has n moles of the monoatomic gas. The loss of kinetic energy of the gas, $\Delta E_{K} = \frac{1}{2}(mv)v^{2}$ If the change in temperature of the gas is ΔT , then heat gained by the gas is, $\Delta Q = \frac{3}{2}nR\Delta T$ Now, according to question, $\Delta Q = \Delta E_{K}$ $\frac{3}{2}nR\Delta T = \frac{1}{2}mnv^{2}$ $\Rightarrow \Delta T = \frac{mv^2}{3R}$

Question 19

A projectile is projected with the velocity of $(3\hat{i} + 4\hat{j})m / s$. The horizontal range of the projectile will be

Options:

A. 1.2m

B. 2.4m

C. 3.6m

D. 4.5m

Answer: B

Solution:

Solution: Given, $v = 3\hat{i} + 4\hat{j}$ $\therefore v = |v| = \sqrt{3^2 + 4^2} \Rightarrow v = 5m / s$ From figure, $5 = \frac{5}{3}$ $\sin\theta = \frac{4}{5} \operatorname{and} c \circ s \theta = \frac{3}{5}$ $\therefore R = \frac{v^2 \sin 2\theta}{g}$ $= \frac{v^2 \cdot 2 \sin \theta \cdot \cos \theta}{g}$ $= \frac{5 \times 5 \times 2 \times \frac{4}{5} \times \frac{3}{5}}{10} = 24m$

Question 20

A transistor is connected in common-emitter (CE) configuration. The collector supply is 8V and the voltage drop across a resistor is 500 Ω in the collector circuit is 0.6V. If the current gain factor α is 0.96, find the base current

Options:

Α. 25μΑ

- B. 50µA
- C. 20µA
- D. 35µA

Answer: B

Solution:

Solution:

Given, $V_{CC} = 8V$ Voltage drop, $V_0 = \Delta I_C R_L = 0.6V$ Load Resistor, $R_L = 500\Omega$ Gain factor, $\alpha = 0.96$ $\therefore \beta = \frac{\alpha}{1-\alpha} = \frac{0.96}{1-0.96} = 24$ Now, $V_0 = \Delta I_C R_L$ $0.6 = \Delta I_C \times 500$ $\Delta I_C = \frac{0.6}{500} = 1.2 \times 10^{-3} A$ Now, $\beta = \frac{\Delta I_C}{\Delta I_B}$ \therefore Base current $\Delta I_B = \frac{\Delta I_C}{\beta} = \frac{1.2 \times 10^{-3}}{24} = 5 \times 10^{-5}$ $= 50 \times 10^{-6}$ $\Delta I_B = 50\mu A$

Question 21

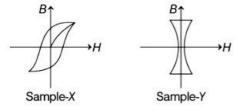
A solid sphere of 80 kg and radius 15m moving in a space becomes a circular disc of radius 20m in 1h. The rate of change of moment of Inertia in this process is

Options:

- A. $\frac{30}{9}$ kg^{-m² s⁻¹}
- B. $\frac{25}{9}$ kg m² s⁻¹
- C. $\frac{10}{9}$ kg m² s⁻¹
- D. $\frac{22}{9}$ kg m² s⁻¹

Answer: D

Solution:


Solution:

Given, mass of solid sphere = 80kg radius of solid sphere, $R_s = 15m$ radius of circular disc, $R_c = 20m$ and time = 1 hour = 60 minutes = 60 × 60sec \therefore Moment if inertia of solid sphere, $I_s = \frac{2}{5}MR^2$

 $=\frac{2}{5} \times 80 \times (15)^2$ $= 7200 \text{kg} - \text{m}^2$ Similarly, moment of inertia of the disc, $I_c = \frac{1}{2}MR_c^2$ $=\frac{1}{2} \times 80 \times (20)^2$ $= 16000 \text{kg} - \text{m}^2$ Rate of change of moment of Inertia = $\frac{I_c - I_s}{+}$ $=\frac{16000-7200}{1}$ 60×60 $=\frac{22}{\alpha}kg-m^2s^{-1}$

Question 22

If the B – H curves of two samples of X and Y of iron are as shown below, then which one of the following statement is correct?

Options:

A. Both X and Y are suitable for making electromagnets.

B. Both X and Y are suitable for making permanent magnet.

C. X is suitable for making permanent magnet and Y for making electromagnet.

D. X is suitable for making electromagnet and Y is suitable for permanent magnet.

Answer: C

Solution:

Solution:

For permanent magnet we prefer a material with high retentivity and high coercivity. For electromagnet, we prefer high saturated magnetism, low coercivity and least possible area of hysteris loop.

Therefore, X is suitable for making parmanent magnet and γ for making electromagnet.

Ouestion 23

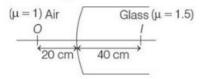
In a radioactive material the activity at time t_1 , is A_1 and at a later time t_2 , it is A_2 . If the decay constant of the material is λ , then

Options:

A. $A_1 = A_2 e^{-\lambda(t_1 - t_2)}$

B. $A_1 = A_2 e^{\lambda (t_1 - t_2)}$ C. $A_1 = A_2 \left(\frac{t_2}{t_1}\right)$ D. $A_1 = A_2$

Answer: A


Solution:

$$\begin{split} &\textbf{Solution:}\\ &\textbf{From radioactive decay law,}\\ &-\frac{d\,N}{d\,t} \propto N \text{ or } -\frac{d\,N}{d\,t} = \lambda N\\ &\textbf{Thus, } A = -\frac{d\,N}{d\,t} \text{ or } A = \lambda N\\ &\Rightarrow A = \lambda N_0 e^{-\lambda t} \dots (i)\\ &\textbf{Where, } A_0 = \lambda N_0 \text{ is the activity of the radioactive material at time, } t = 0\\ &At time, t_1, \dots, A_1 = A_0 e^{-\lambda t_1} \dots (ii)\\ &At time, t_2, \dots, A_2 = A_0 e^{-\lambda t_2} \dots (iii)\\ &On didviding Eq. (ii) by Eq. (iii), we have\\ &\frac{A_1}{A_2} = \frac{e^{-\lambda t_1}}{e^{-\lambda t_2}} = e^{-\lambda (t_1 - t_2)}\\ &\Rightarrow A_1 = A_2 e^{-\lambda (t_1 - t_2)} \end{split}$$

Question 24

A mosquito O is sitting infront of a glass rod having spherical end of radius of curvature 40 cm. The image would be formed at

Options:

A. 40 cm left

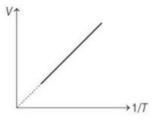
B. infinity

C. 20 cm to the right

D. 15 cm to the left

Answer: A

Solution:


Solution:

As, we know, $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{R}$ $\Rightarrow \frac{1.5}{v} = \frac{1}{(-20)} = \frac{1.5 - 1}{+40}$ $\Rightarrow v = -40 \text{ cm}$ Negative sign shows that image is obtained on the same side of object i.e., towards left.

Question 25

One mole of an ideal diatomic gas undergoes a process as shown in the figure. The molar specific heat of the gas in the process is

Options:

- A. $\frac{3R}{2}$
- B. $\frac{R}{2}$
- C. $\frac{5R}{2}$
- D. $\frac{7R}{2}$

Answer: A

Solution:

Solution:

In the curve, $V \propto \frac{1}{T}$ $\Rightarrow V = m\frac{1}{T}$ where, m = slope of curve. $\Rightarrow VT = \text{ constant}$ $\therefore T d V + V d T = 0.....(i)$ $\Rightarrow d V = -\frac{V}{T} d T$ As, $Q = \Delta U + W$ $Cd T = C_V d T + pd V \dots$ (ii) $Cd T = C_V d T - \frac{p}{T} V d T$ $\Rightarrow C = C_V - p\frac{V}{T}$ $= C_V - R(\because p\frac{V}{T} = R)$ For diatomic gas, $C_V = \frac{5}{2}R$ $\therefore C = C_V - R = \frac{5}{2}R - R = 3\frac{R}{2}$

Question 26

A capillary tube is attached horizontally to a constant heat arrangement. If the radius of the capillary tube is increased by 25%, then the rate of flow of liquid will change nearly by

Options:

- A. 100%
- B. 112%
- C. 124%
- D. 144%

Answer: D

Solution:

Solution: Liquid volume coming out of the tube per second $V = \frac{p\pi r^4}{8\eta l}$ $\Rightarrow V \alpha r^4$ $\Rightarrow V_2 V_1 = \left[\frac{r_2}{r_1}\right]^4 \Rightarrow V_2 = V_1 \left[\frac{125}{100}\right]^4 = V_1 \left(\frac{5}{4}\right)^4$ $\Rightarrow V_2 = V_1 (244)$ so, now $\frac{\Delta V}{V} = \frac{V_2 - V_1}{V_1} = \frac{(244)V_1 - V_1}{V_1} = 144\%$

Question 27

In the arrangement shown in figure, when the switch S_2 is open, the galvanometer, shows no deflection for l = 50 cm when the switch S_2 is closed, the galvanometer shows no deflection for l = 0.416m. The internal resistance (r) of 6V cell is

Options:

- Α. 2Ω
- Β. 3Ω
- C. 5Ω
- D. 9Ω

Answer: A

Solution:

Solution:

When S_2 open. Assume resistance of $X \gamma = R$ Resistance of wire per unit length, $x = \frac{R}{L} = R\Omega m^{-1}$ $\therefore I = \frac{E_0}{R}$ Now, the potential drop across 50 cm length is 6V, so $\frac{E_0}{R} \times R \times \frac{50}{100} = 6$ $\Rightarrow E_0 = 12V$ When S_2 closed, potential drop across 0.416cm length, $V_1 = \frac{E_0}{R} \times R \times 0.416 = 12 \times 12 \times 0.416 \approx 5V$ Hence, E - Ir = 5V $\Rightarrow 6 - Ir = 5$ $\therefore I = \frac{5}{10}$ $\therefore 6 - 5 = \frac{5}{10}r$ $\Rightarrow r = 2\Omega$

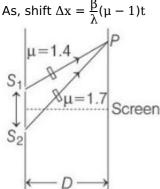
Question 28

In a young's double slit arrangement frings are produced using light of wavelength 4000Å. One slit is covered by a thin plate of glass of refractive index 1.4 and the other with another glass plate of same thickness but of refractive index 1.7. By doing so the central bright shifts to original sixth fringe from Centre. Thickness of glass plate is

Options:

A. 2µm

B. 8µm


 $C. \ 11 \mu m$

D. 16µm

Answer: B

Solution:

Shift due to one plate $\Delta x_1(\mu_1 - 1)t$ Shift due to another path $\Delta x_2 = \frac{\beta}{\lambda}(\mu_2 - 1)t$ Net shift $\Delta x = \Delta x_2 - \Delta x_1 = \frac{\beta}{\lambda}(\mu_2 - \mu_1)t.....$ (i) Also, it is given that $\Delta x = 6\beta$ Hence, $6\beta = \frac{\beta}{\lambda}(\mu_1 - \mu_2)t$ $\Rightarrow t = 6\frac{\lambda}{(\mu_1 - \mu_2)} = 6 \times \frac{4000}{(1.7 - 1.4)} - 80000\text{\AA}$ $\Rightarrow t = 8 \times 10^{-6} = 8\mu\text{m}$

Question 29

An electric current I enters and leaves a uniform circular wire of radius r through diametrically opposite points. A charged particle q moves along the axis of circular wire passes through its centre at speed v. The magnetic force on the particle when it passes through the centre has a magnitud

Options:

A. $\frac{qv\mu_0I}{2\pi r}$ B. $qv\frac{\mu_0I}{\pi r}$

 $C. \ \frac{qv\mu_0I}{r}$

D. 0

Answer: D

Solution:

Solution: Force on a moving charged particle in uniform magnetic field $F = Bqvsin\theta.....(i)$ Since, charge particle moves along the axis odf circular current carrying loop, therefore, $\theta = 0^{\circ}$ or 180° When $\theta = 0^{\circ}$; $f = Bqvsin0^{\circ}$ F = 0When $\theta = 180^{\circ}$, $f = Bqvsin180^{\circ}$ F = 0

Question 30

An achromatic convergent doublet of two lenses in contact has a power of +5D. The power of converging lens is +6D. The ratio of the dispersive power of the convergent and divergent lenses is

Options:

A. 3 : 7

B. 2 : 3

C. 1 : 5

D. 5 : 3

Answer: C

Solution:

Solution: The condition of achromatism is $W_1P_1 + W_2P_2 = 0$ $\Rightarrow W_1P_1 = -W_2P_2$ $\Rightarrow \frac{W_1}{W_2} = \frac{P_2}{P_1}$(i) Now, $P_1 + P_2 = 4D$(ii) but, Power of converting lens, $P_1 = 5D$ \because Power of diverging lens $P_2 = 4D - P_1$ [From ii] = 4D - 5D = -D \therefore From Eq. (i), we have $\frac{W_1}{W_2} = \frac{P_2}{P_1} = \frac{-(-D)}{5D} = \frac{1}{5} \Rightarrow \frac{W_1}{W_2} = \frac{1}{5}$

Question 31

Which one of the following is correct order of given isotopes? I. $T_2 > D_2 > P_2$ (order of boiling point) II. $T_2 > D_2 > P_2$ (order of bond energy) III. $T_2 = D_2 = P_2$ (order of bond length) IV. $T_2 < D_2 < P_2$ (order of reactivity with Cl_2)

Options:

A. I and II

B. III and IV

C. II, III and IV

D. All of these

Answer: D

Solution:

Solution:

Protium (P), deuterium (D) and tritium (T) are the three isotopes of hydrogen. These isotopes follow the order in different contexts as shown below : $T \rightarrow D \rightarrow D$ [Order of belling neight (DD)]

 $T_2 > D_2 > P_2$ [Order of boiling point (BP)]

 $T_2 > D_2 > P_2$ [Order of bond energy (BE)]

 $T_2 = D_2 = P_2$ [Order of bond length (BL)] \$T 2 Hence, all the given order are correct.

Question 32

Ninhydrin gives yellow colour in paper chromatography with which amino acid?

Options:

- A. Tryptophan
- B. Proline
- C. Alanine
- D. Tyrosine

Answer: B

Solution:

Solution:

The amino acid which gives yellow colour with ninhydrin in paper chromatography is proline. Ninhydrin + Proline \rightarrow Yellow-orange product

Question 33

How will raise in temperature affects the viscosity of liquids and gases?

Options:

- A. Both increases
- B. Both decreases
- C. In case of liquids, decreases and in case of gases, increases.
- D. In case of liquid, increases and in case of gases, decreases.

Answer: B

Solution:

Solution:

In case of liquids, cohesive forces decrease and hence, their viscosity decreases while increasing the temperature. However, in case of gases, with the increase in temperature kinetic energy of gaseous molecules increases and the molecules become more mobile.

Question 34

Which of the following compounds is thermodynamically is the most stable?

Options:

A. BaCO₃

B. MgCO₃

C. SrCO₃

D. CaCO₃

Answer: A

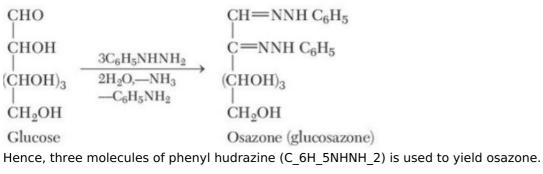
Solution:

Solution:

The thermal stability of carbonates increases down the group. So, the order of thermal stability of carbonates of alkaline earth metals is $BaCO_3 > CaCO_3 > M gCO_3 > BeCO_3$. Therefore, $BaCO_3$ is thermodynamically most stable and $BeCO_3$ is least stable.

Question 35

Glucose reacts with X number of molecules of phenyl hydrazine to yield osazone. The value of X is,


Options:

- A. three
- B. two
- C. one
- D. four

Answer: A

Solution:

Solution:

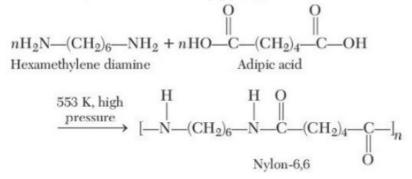
Question 36

Nylon- 6,6 is obtained from

Options:

A. adipic acid and hexamethylene diamine

B. tetrafluoroethylene


- C. vinyl cyanide
- D. vinyl benzene

Answer: A

Solution:

Solution:

The monomer units of nylon -6, 6 are hexamethylene diamine and adipic acid.

Question 37

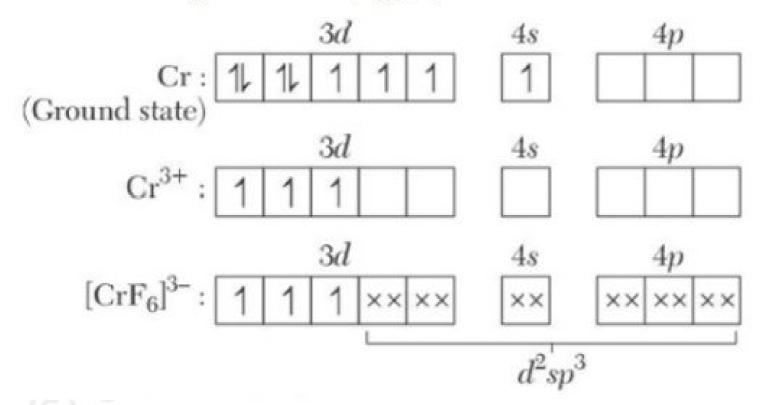
What is the hybridisation of $[CrF_6]^{3-}$?

Options:

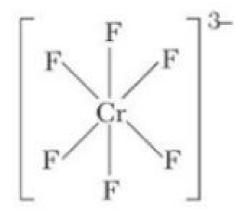
A. sp^3d

B. sp³d²

C. d 2 sp 3


D. d 2 sp

Answer: C


Solution:

Solution:

The electronic configuration of Cr is $[4r]3d^54s^1$.

 $[CrF_6]^{3-}$ has d^2sp^3 - hybridization and octahedral geometry.

Question 38

OF and $\mathbf{F}_{\mathbf{2}}$ can be compared in terms of

Options:

- A. OF is paramagnetic while ${\rm F_2}$ is diamagnetic
- B. OF is more stable towards dissociation into atoms
- C. Both (a) and (b) are correct
- D. None of the above is correct
- Answer: C

Solution:

Solution:

Species Electons		Bond order	Unpaired electron	
0 - F	17	1.5	1	Paramegnetic
F ₂	18	1.0	0	Diamagnetic

This is one unpaired electron on (O - F), hence paramagnetic, thus (a) is correct. As bond order of O - F > F - F thus, bond energy of O - F > F - F. Hence, (a) and (b) both correct.

Question 39

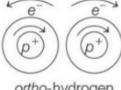
ortho and para form of hydrogen have

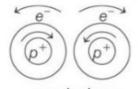
Options:

A. different physical and chemical properties

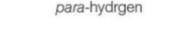
B. identical physical properties but different chemical properties

C. identical chemical properties but different physical properties


D. identical chemical and physical properties


Answer: C

Solution:


Solution:

ortho and para hydrogen similar to each other in their chemical properties but they have different physical properties like boiling point, thermal conductivity, due to their difference in overall spins.

ortho-hydrogen

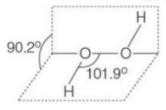
Question 40

The structure of H_2O_2 is

Options:

A. planar, linear

B. non-planar, linear


- C. planar, non-linear
- D. non-planar, non-linear

Answer: D

Solution:

Solution:

Hydrogen peroxide (H $_2O_2$) is a non-planar molecule with twisted symmetrical structure. It has non-linear structure with an open book structure.

Question 41

Match the species in Column I with their types in Column II.

Column I	Column II		
A. DDT	1. Photochemical smog		
B. NaClO ₃	2. Disinfectant		
C. Cl ₂	3. Herbicides		
D. PAN	4. Pesticides		

Options:

A. $A \rightarrow 4$, $B \rightarrow 3$, $C \rightarrow 2$, $D \rightarrow 1$ B. $A \rightarrow 1$, $B \rightarrow 2$, $C \rightarrow 3$, $D \rightarrow 1$ C. $A \rightarrow 2$, $B \rightarrow 3$, $C \rightarrow 1$, $D \rightarrow 4$ D. $A \rightarrow 3$, $B \rightarrow 1$, $C \rightarrow 2$, $D \rightarrow 4$

Answer: A

Solution:

Solution:

The correct match is $A \rightarrow (4)$; $B \rightarrow (3)$; $C \rightarrow (2)$; $D \rightarrow (1)$ A. DDT \rightarrow Pesticides B. N aCl O₃ \rightarrow Herbicides C. Cl₂ \rightarrow Disinfectants D. PAN \rightarrow Photochemical smog

Question 42

In which pair or pairs is the stronger bond found in the first species? I. O_2^{2-} , O_2 ;

II. N_2 , N_2^+ ; III. NO⁺, NO⁻

Options:

A. I only

B. II only

C. I and II only

D. II and III only

Answer: D

Solution:

Solution:

	Bond order				
I.	02 ²⁻ 02	1 1	Weaker		
11.	N_2 N_2^+	3 2.5	Stronger		
Ш.	NO ⁺ NO ⁻	3 2	Stronger		

Larger the bond order, stronger the bond formed.

Question 43

Select the correct statement about the complex $[Co(NH_3)_5 SO_4]$ Br.

Options:

- A. Its ionisation isomer is $[Co(NH_3)_5 Br]SO_4$.
- B. It gives yellow precipitate with $AgNO_3$.
- C. Its ionisation isomer give while precipitate with $\mbox{BaCl}_2.$
- D. All the above are correct statements.

Answer: D

Solution:

(d)
$$[Co (NH_3)_5 SO_4] Br \rightleftharpoons [Co(NH_3)_5 SO_4]^+ + Br^-$$

 \uparrow
Yellow ppt.
with AgNO_3
 $[Co(NH_3)_5 Br] SO_4 \rightleftharpoons [Co (NH_3)_5 Br]^{2+} + SO_4^{2-}$
 \uparrow
White ppt. with BaCl₂

Question 44

A certain metal sulphide, M $\rm S_2$, is used extensively as a high temperature lubricant. If M $\rm S_2$ is 40.06% by mass sulphur, metal M has atomic mass.

Options:

A. 160 u

B. 64 u

C. 40u

D. 96u

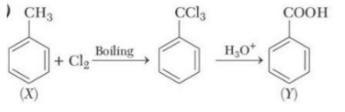
Answer: D

Solution:

Solution: M S - 2 = M + 32 × 2 = M + 64 % of sulphur = $\left(\frac{64}{M + 64}\right) \times 100 = 40.06$ M + 64 = $\frac{6400}{40.06}$ M + 64 = 160 M = 160 - 64 = 96u

Question 45

 $\begin{array}{c} X \xrightarrow[Boiling^2]{}^{Cl} \\ \overrightarrow{} \end{array} \begin{array}{c} Benzotrichloride \\ \overrightarrow{} Y \end{array} \\ \begin{array}{c} H_3O^+ \\ \overrightarrow{} Y \end{array} \\ \begin{array}{c} X \\ \overrightarrow{} \end{array} \end{array}$


Options:

- A. benzene, benzaldehyde
- B. toluene, benzaldehyde
- C. toluene, benzoic acid
- D. benzene, benzoic acid

Answer: C

Solution:

Solution:

Question 46

Ge (II) compounds are powerful reducing agents whereas Pb (IV) compounds are strong oxidants. It can be because

Options:

A. Pb is more electropositive than G

B. ionisation potential of lead is less than that of Ge.

C. ionic radii of Pb^{2+} and Pb^{4+} are larger than that of Ge^{2+} and Ge^{4+} .

D. more pronounced inert pair effect in lead has.

Answer: D

Solution:

Solution:

Inert pair effect is more pronounced in heavier members like Pb. Hence, Pb (IV) compounds act as strong oxidising agents and are reduced to more stable Pb (II) compounds.

Question 47

Which compound has antifluorite structure?

Options:

A. MnO_4

B. Na₂O

C. Na₂O₂

D. Li_2O_2

Answer: B

Solution:

Solution:

Anti-fluorite structure refers to an anion array with tetrahedral cations and the compound having A_2B formula have anti-fluorite structure. So, N a_2O has an anti-fluorite structure in which N a^+ ions occupy all the tetrahedral voids and O^{2-} occupy half of the cubic holes.

Question 48

100 mL of 2M of formic acid(pK $_{a}$ = 3.74) is neutralise by NaOH, at the equivalence point pH is

Options:

A. 7

B. 6

C. 9.5

D. 8.87

Answer: D

Solution:

Solution:

Sodium formate is present at the equivalence point. It is the salt of weak acid + strong base. So, final solution will be basic in nature. As we know

 $pH = 7 + \frac{pK_a}{2} + \frac{\log C}{2}$

where, C is concentration of salt. Total volume of solution = 100 + 100 = 200mL Concentration of salt (C) = $2 \times \frac{100}{200} = 1$ M pH = $7 + \frac{3.74}{2} + \frac{\log[1]}{2}$ pH = 7 + 1.87 + 0pH = 8.87

Question 49

The reaction of $C_6H_5CH = CHCH_3$ with HBr produces

Options:

```
\begin{array}{c} \mathrm{C_6H_5\,CHCH_2CH_3}\\|\\\mathrm{Br}\end{array}
```

Β.

 $\begin{smallmatrix} \mathrm{C_6H_5CH_2} & \mathrm{CHCH_3} \\ | \\ \mathrm{Br} \end{smallmatrix}$

$\mathrm{C.}~\mathrm{C_6H_5CH_2CH_2Br}$

D.

Answer: A

Solution:

Solution:

(a)
$$C_6H_5CH = CHCH_3 + H^+ \xrightarrow{Slow}_+$$

 $C_6H_5 - CH - CH_2 - CH_3$
Stable carbocation (Benzylic)

$$\begin{array}{c} \mathbf{C}_{6}\mathbf{H}_{5} & -\mathbf{\dot{C}}\mathbf{H} - \mathbf{C}\mathbf{H}_{2} - \mathbf{C}\mathbf{H}_{3} + \mathbf{Br}^{-} \xrightarrow{\mathbf{Fast}} \\ \mathbf{C}_{6}\mathbf{H}_{5} & -\mathbf{C}\mathbf{H} - \mathbf{C}\mathbf{H}_{2} - \mathbf{C}\mathbf{H}_{3} \\ & | \\ \mathbf{Br} \\ \mathbf{Addition\ product}} \end{array}$$

Electrophile addition reaction takes place via more stable carbocation.

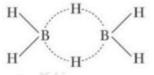
+

Question 50

The number of $3C - 2e^{-bonds}$ present in diborane is

Options:

A. 1


- B. 2
- C. 3
- D. 4

Answer: C

Solution:

Solution:

The structure of diborane is

In this structure, there are two $3C - 2e^{-}$ bonds. 3 atoms, B - H - B share two electrons and form an angular geometry, leading bent bond, also known as banana bond.

Question 51

Standard entropy of X₂, Y₂ and XY₂ are 60,40 and 50JK⁻¹mol⁻¹, respectively. For the reaction, $\frac{1}{2}X_2 + \frac{3}{2}Y_2 \rightarrow XY_3$, $\Delta H = -30$ kJ, to be at equilibrium, the temperature will be

Options:

A. 1250K

B. 500K

C. 750K

D. 1000K

Answer: C

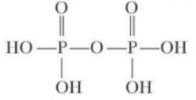
Solution:

Solution: $\Delta S = S(X \gamma_3) - \frac{1}{2}S(X_2) - \frac{3}{2}S(\gamma_2)$ $= 50 - 30 - 60 = -40J \text{ mol}^{-1}\text{K}^{-1}$ $\Delta H = -30\text{kJ} = -3000\text{J}$ $\Delta G = \Delta H - T \Delta S$ At equilibrium, $\Delta G = 0$ $T = \frac{\Delta H}{\Delta S} = \frac{-3000}{-40} = 750\text{K}$

Question 52

The total number of P – OH bonds for pyrophosphoric acid

Options:


- A. 4
- B. 5
- C. 6
- D. 8

Answer: A

Solution:

Solution:

The structure of pyrophosphoric acid is

There are P - OH bonds, 1P - O - P bond and two P = O bonds.

Question 53

Using the standard electrode potential, find out the pair between which redox reaction is not feasible. E $^{\circ}$ values Fe³⁺ / Fe²⁺ = +0.77; I₂ / I⁻ = +0.54 Cu²⁺ / Cu = +0.34; Ag⁺ / Ag = 0.80V

Options:

A. Fe^{3+} and I^-

B. Ag⁺and Cu

C. Fe^{3+} and Cu

D. Ag and Fe^{3+}

Answer: D

Solution:

Solution:

(a) $2F e^{3+} + 2e^- \rightarrow 2F e^{2+}$; $E^\circ = 0.77V$ $2I^- \rightarrow I_2 + 2e^-$; $E^\circ = -0.54V$ (sign of E° is reversed)

 $\overline{2F e^{3+} + 2I^- \rightarrow 2F e^{2+} + I_2}$; $E^{\circ}_{cel} = +0.23V$

This reaction is feasible, since E $^{\circ}_{cell}$ is positive. (b) Cu \rightarrow Cu²⁺ + 2e⁻; E $^{\circ}$ = -0.34V (sign of E $^{\circ}$ gas been reversed) 2Ag⁺ + 2e⁻ \rightarrow 2Ag; E $^{\circ}$ = +0.80V This reaction is feasible, since E°_{cell} is positive. (c) $2F e^{3+} + 2e^{-} \rightarrow 2F e^{2+}$; $E^{\circ} = +0.77V$ $Cu \rightarrow Cu^{2+} + 2e^{-}$; $E^{\circ} = -34V$ (sign of E° is reversed)

 $\overline{2Fe^{3+} + Cu \rightarrow Fe^{2+} + Cu^{2+}}; E^{\circ} = +0.43V$

This reaction is feasible, since E $^{\circ}_{cell}$ is positive. (d) Ag \rightarrow Ag⁺ + e⁻; E $^{\circ}$ = -0.80V (sign of E $^{\circ}$ is reversed) F e³⁺ + e⁻ \rightarrow F e²⁺; E $^{\circ}$ = +0.77V

 $\overline{\text{Ag} + \text{F e}^{3+} \rightarrow \text{Ag}^{+} + \text{F e}^{2+}}; \text{ E}^{\circ} = -0.03\text{V}$

This reaction is not feasible, since E_{cell}° is negative.

Question 54

What is $[NH_4^+]$ in a solution that is $0.02MNH_3^- 0.01M$ KOH ? $[K_b(NH_3) = 1.8 \times 10^{-5}]$

Options:

A. 3.6×10^{-5} M

B. 1.8×10^{-5} M

C. 0.9×10^{-5} M

D. 7.2×10^{-5} M

Answer: A

Solution:

Solution: N H₄OH ≈ N H₄⁺ + OH⁻ K_b = $\frac{[N H_4^+][OH^-]}{[N H_4OH]}$ 1.8 × 10⁻⁵ = $\frac{[N H_4^+][0.01]}{[0.02]}$ ∴[N H₄⁺] = 3.6 × 10⁻⁵M

Question 55

For an isomerisation reaction $A \rightleftharpoons B$, the temperature dependence of equilibrium constant is given by $\log_e K = 4.0 - \frac{2000}{T}$ The value of ΔS° at Hook is, therefore

Options:

B. 5R

C. 400R

D. 2000R

Answer: A

Solution:

Solution:

van't Hoff equation giving variation of equilibeium constant, K with temperature T is
$$\begin{split} \log_e & K = -\frac{\Delta H}{RT} + \frac{\Delta S}{R} \\ \text{Given, } \log_e & K = -\frac{2000}{T} + 4.0 \\ \therefore \frac{\Delta S^\circ}{R} = 4 \\ \Rightarrow \Delta S^\circ = 4R \end{split}$$

Question 56

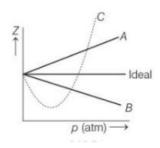
In an adiabatic process, no transfer of heat takes place between system and surrounding. Choose the correct option for free expansion of an ideal gas under adiabatic condition from the following.

Options:

A. $q = 0, \Delta T \neq 0, W = 0$ B. $q \neq 0, \Delta T = 0, W = 0$ C. $q = 0, \Delta T = 0, W = 0$ D. $q = 0, \Delta T < 0, W \neq 0$

Answer: C

Solution:


Solution:

Free expansion, W = 0Adiabatic process, q = 0 $\Delta U = q + W = 0$, this means that internal energy remains constant. Therefore, $\Delta T = 0$ in ideal gas there is no intermolecular attraction. Hence, when such a gas expands under adiabatic conditions into a vacuum, no heat is absorbed or evolved, since no external work is done to separate the molecules.

Question 57

The given graph represents the variation of compressibility factor (Z) = $\frac{pV}{nRT}$, for three real gases A, B and C. Identify the only incorrect statement.

Options:

A. For the gas A, a = 0 and its dependence on p is linear at all pressure.

B. For the gas B, b = 0 and its dependence on p is linear at all pressure.

C. For the gas C, which is typical real gas for which neither. a nor b = 0. By knowing the minima and point of the intersection, with Z = 1, a and b can be calculated.

D. At high pressure the slope is positive for all real gases.

Answer: B

Solution:

Solution:

From the graph it is clear that, the value of 'Z ' decreases with increase of pressure. We can explain as follows on the basis of van der Waals' equation.

At high pressure, when 'p' is large, V will be small and one cannot ignore 'b' in comparison to V. However, the team $\frac{a}{V^2}$ may be considered negligible in comparison to 'p' in van der Waals' equation.

$$\left(p + \frac{a}{V^2}\right)(V - b) = nRT$$

$$p(V - b) = nRT$$

$$\Rightarrow pV - pb = nRT$$
or $p\frac{V}{n}RT = 1 + \frac{pb}{nRT}$
or $Z = 1 + \frac{pb}{nRT}$

Thus, Z is greater than 1. As pressure is increased (at constant T), the factor $\frac{pb}{nRT}$ increases. This explains why after minima in the curves, Z increase continuously with pressure. Hence, the only incorrect statement is (b).

Question 58

Which one of the following statements in relation to the hydrogen atom is correct?

Options:

A. 3s, 3p and 3d -orbitals all have the same energy.

B. 3s and 3p-orbitals are of lower energy than 3d -orbital.

C. 3p-orbital is lower in energy than 3d -orbital.

D. 3s-orbital is lower in energy than 3p-orbital.

Answer: A

Question 59

In the molecules CH_4 , NF_3 , NH_4^+ and H_2O

Options:

A. number of lone pairs are same

B. all have same hybridisation of centre of atom

C. the bond angles are same

D. number of bond pairs are same

Answer: B

Solution:

Solution:

CH ₄; bp = 4; sp³ – hybridisation N F ₃; bp = 3; l p = 1; sp³ – hybridisation N H ₄⁺; bp = 4; l p = 0; sp³ – hybridisation H ₂O; bp = 2; l p = 2; sp³ – hybridisation Hence, all have the same slope.

Question 60

0.20g of an organic compound gave 0.12g of AgBr By using Carius method, the percentage of bromine in the compound will be

Options:

A. 34.06%

B. 44.04%

C. 54%

D. 25%

Answer: D

Solution:

Solution:

Given, Mass of an organic compound = 0.20g Mass of AgBr = 0.12g Molecular mass of AgBr = 188gmol⁻¹ 188g of AgBr contains 80g of bromine $\therefore 0.12g \text{ of } AgBr \text{ will contain } = \frac{80}{188} \times 0.12$ = 0.05g of bromine $\therefore \text{ Percentage of bromine } = \frac{0.05}{0.20} \times 100$ = 25%

Question 61

Forthrightness in speech may not always be a desirable quality.

Options:

- A. Outspokenness
- B. Obliqueness
- C. Mendacity
- D. Equivocation

Answer: A

Solution:

Solution: Forthrightness and 'outspokenness' both have a same meaning, i.e. straight forward.

Question 62

The <u>inexorable</u> demands of the workers brought the company to a closure.

Options:

- A. Unreasonable
- B. Relentless
- C. Monetary
- D. Violent
- **Answer: B**

Solution:

Solution: 'Inexorable' means 'relentless', i.e. without any particular end.

Question 63

<u>Select the one which best expresses the same sentence in Passive/Active voice.</u> Then her face was bowed.

Options:

- A. Then she was being bowed her face.
- B. Her face was bowed by them.
- C. Then she bowed her face.
- D. Then her face has been bowed.

Answer: C

Solution:

Solution: 'Then she bowed her face', is the correct passive form of the given sentence.

Question 64

The complex form of the sentence given below would be Spare the rod and spoil the child.

Options:

- A. The child is spoiled if the rod is spared.
- B. The child becomes spoiled when the rod is spared.
- C. The child is spoiled whenever the rod is spared.
- D. The child is spoiled when the rod is spared.

Answer: D

Solution:

Solution:

The complex form of the sentence would be the child is spoiled when the rod is spared'.

Question 65

The attack on the freedom of the press is a retrograde step.

Options:

- A. progressive
- B. stubborn
- C. punitive

D. aggressive

Answer: A

Solution:

Solution:

Retrograde means declining. Hence, 'progressive' is its correct antonym.

Question 66

The leader might have had some covert reason for the change of his political affiliations.

Options:

A. Unjustifiable

B. Obvious

C. Inexplicable

D. Flimsy

Answer: B

Solution:

Solution:

'Covert' means hidden. So, 'obvious' would be its correct antonym.

Question 67

Regard for others as a principle of action or selflessly.

Options:

A. Gynicism

- B. Nepotism
- C. Philanthropy
- D. Altruism
- Answer: D

Solution:

Solution: Disinterested and selfless concern for the well-being of other is called Altruism.

Question 68

Code of diplomatic etiquette and precedence is

Options:

- A. Formalism
- B. Statesmanship
- C. Protocol
- D. Hierarchy

Answer: C

Solution:

Solution: Code of diplomatic etiquette and precedence is called protocol.

Question 69

(A) Now under liberated economy they are learning to compete domestically and globally.

(B) In India corporations until recently achieved success by avoiding competition, using protected and regulated domestic markets.(C) The trend is irreversible.

(D) Business leaders are preparing themselves to meet competitive challenges, and to avoid being swept away.

Options:

- A. BADC
- B. BDCA
- C. BDAC
- D. CDBA

Answer: A

Solution:

Solution:

BADC is the correct sequence to from a logical paragraph.

Question 70

(A) Recovery was given inadequate attention and consequently some bank branches regularly incurred heavy losses and their parent bodies had to bale them out.

(B) As a result, banks indulged in extensive lending to borrowers who had little or no potential to make repayments.

(C) To fulfil the social objectives laid down by the masters of nationalisation, banks were asked to lend to identified priority sectors.
(D) 1992-93 results showed that the loss making branches of public sector banks increased from 10,000 to 13,000 and the quantum of losses showed at ₹3, 369 crores.

Options:

A. BACD

B. DABC

C. CBAD

D. BCAD

Answer: C

Solution:

Solution: CBAD is the correct sequence to form a meaningful and logical paragraph.

Question 71

Select the figure that can replace the question mark (?) in the following series.

	A		0
00	\$	Φ°	(

Options:

A.

В.

C.

Answer: A

Solution:

Solution:

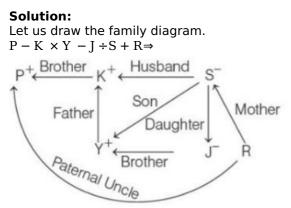
In the given series triangle is moving $\frac{1}{2}$ place in clockwise direction along the sides and corners of square and also unshaded and shaded alternatively. The rhombus is moving one place in anti-clockwise direction along the sides of square. Hence, we will get the following figure.

Question 72

'A+B' means 'A is the mother of B'.
'A-B' means 'A is the brother of B'.
'A ×B ' means ' A is the father of B '.
'A ÷B ' means ' A is the daughter of B '.
If, P - K × Y - J÷S + R, then which of the following statement is not correct?

Options:

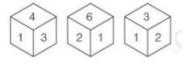
A. K is husband of S


B. Y is son of S

C. J is daughter of P

D. P is paternal uncle of R

Answer: C


Solution:

Clearly, option (c) is wring because $J\,$ is the daughter of $K\,$ and S.

Question 73

Three different positions of the same dice are shown, the six faces of which are numbered from 1 to 6 . Select the number that will be on the face opposite to the one showing ' 6 '.

Options:

- A. 2
- B. 4
- C. 5
- D. 3

Answer: D

Solution:

Solution:

Inumber is common in first two position of dices. Now, start with 1 number, writing all the remaining numbers in clockwise direction.

Dice 1	1	4 :		3
		Common	Opposite	Opposite
Dice 2	1		2	6

Hence, 3 number will be on the face opposite to the one showing 6.

Question 74

Select the option in which the given figure X is embedded (rotation is not allowed).

Options:

A.

B.

C.

D.

Answer: B

Solution:

Solution:

The question figure is embedded in answer figure (b).

Question 75

Select the letter-cluster that can replace the question mark(?) in the following series. TULG, WRPC, ZOTY, CLXU,?

Options:

A. FIBQ

B. FICR

C. FJCQ

D. GIAQ

Answer: A

Solution:

Solution:

The pattern of the series is as follows

 $T \xrightarrow{+3} W \xrightarrow{+3} Z \xrightarrow{+3} C \xrightarrow{+3} F$ $U \xrightarrow{-3} R \xrightarrow{-3} O \xrightarrow{-3} L \xrightarrow{-3} I$ $L \xrightarrow{+4} P \xrightarrow{+4} T \xrightarrow{+4} X \xrightarrow{+4} B$ $G \xrightarrow{-4} C \xrightarrow{-4} Y \xrightarrow{-4} U \xrightarrow{-4}$ \therefore ? = F I BQ

Question 76

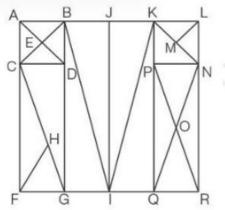
How many triangles are there in the given figure?

Options:

A. 33

B. 18

C. 31


D. 29

Answer: C

Solution:

Solution:

The number of triangles in the figure are :

 $\begin{array}{l} \Delta ABE \ , \ \Delta AE \ C, \ \Delta CE \ D, \ \Delta BE \ D, \ \Delta ADC, \ \Delta CDB, \ \Delta ABC, \\ \Delta ABD, \ \Delta PON \ , \ \Delta QOR, \ \Delta POQ, \ \Delta N \ OR, \ \Delta PN \ Q, \ \Delta PQR, \\ \Delta N \ QR, \ \Delta N \ PR, \ \Delta CF \ G, \ \Delta CDG, \ \Delta CH \ F \ , \ \Delta H \ F \ G, \\ \Delta K \ PN \ , \ \Delta K \ LN \ , \ \Delta K \ LM \ , \ \Delta LM \ N \ , \ \Delta BGI \ , \ \Delta BI \ J \ , \ \Delta J \ I \ K \ , \\ \Delta BI \ K \ , \ \Delta K \ I \ Q, \ \Delta K \ N \ Q \ and \ \Delta BC \ G \ = \ 31 \end{array}$

Question 77

The average marks of 50 students in a class was found to be 64 . If the marks of two students were incorrectly entered as 38 and 42 instead of 83 and 24 , respectively, then what is the correct average?

Options:

A. 64.54

B. 62.32

C. 61.24

D. 61.86

Answer: A

Solution:

Solution: Average marks of 50 students = 64 Sum of marks of 50 students = Average × number of students = 64 × 50 = 3200 According to the question, Correct sum of marks of 50 students = 3200 - 38 - 42 + 83 + 24 = 3200 + 27 = 3227 \therefore Correct average marks of 50 students = $\frac{3227}{50}$ = 64.54

Question 78

Select the correct mirror image of the given figure when the mirror is placed on the right of the figure.

Options:

A.

Β.

C.

D.

Answer: A

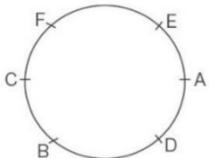
Solution:

When a mirror is placed on the right side of the image, The facing of the figure to the left and right direction changes to the opposite direction in the mirror image. There will be change in top and bottom direction. The mirror image of the given figure is

Question 79

Six friends A, B, C, D, E and F are sitting around a round table facing the centre. A sits second to the right of B, E sits second to the left of C. B doesn't sit adjacent to E. D does not sit opposite to E or C. Who sits to the immediate left of E?

Options:


- A. A
- B. D
- C. B
- D. C

Answer: A

Solution:

Solution:

According to the question,

Hence, A sits immediate left of E .

Question 80

Five friends A, B, C, D and E bought cars which were priced differently. B's car was costlier than C's car but was less costly than E's car. A's car was costlier than D's car but less costly than C's car. Whose car was the 2 nd costliest?

Options:

- A. E
- B. A
- C. B
- D. C

Answer: C

Solution:

Solution: According to the question, E > B > C > A > DHence, B's car was the 2nd costliest.

Question 81

In the following question, complete the missing segment by selecting the appropriate figure from the given alternatives, (a), (b), (c) and (d).

Options:

A.

Β.

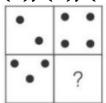
C.

D.

Answer: B

Solution:

Solution:


If figure shown in option (b), is placed in the place of missing portion of the original figure, then it is completed as shown below

Question 82

In each of the following question, find out which of the answer figures (a), (b), (c) and (d) completes the figure matrix?

Options:

A.

B.

C.

D.

Answer: D

Solution:

Solution:

Clearly, in the first row, the number of dots in the second figure is twice the number of dots in the first figure. Similarly, in the second row, the number of dots in the second figure must be twice the number of dots in the first figure. So, number of dots in missing segment $= 2 \times 3 = 6$

Question 83

Statements 60% of government employees went on strike.
Mr. Gopal is a government employee.
Conclusions
I. Mr. Gopal went on strike.
II. Mr. Gopal did not participate in the strike.

Options:

- A. Only conclusion I follows
- B. Only conclusion II follows
- C. Both conclusions i and II follows
- D. Either conclusion I or II follows

Answer: D

Solution:

Solution:

Either of the situation is possible. If Mr. Gopal was one of the member of 60^{wedge} employees, then he went on strike. If he was not in group of 60%, then he did not participate in the strike. Hence, either conclusion I or II follows.

Question 84

Statements Lawyers marry only fair girls. Shobha is very fair. Conclusions I. Shobha is married to a lawyer. II. Shobha is not married to a lawyer.

Options:

- A. Only conclusion I follows.
- B. Only conclusion II follows.
- C. Both conclusion I and II follows
- D. Either conclusion I or II follows

Answer: D

Solution:

Solution:

The statement I is talking about in a condition with the lawyer that they marry only fair girls. But it is not talking about any condition with Shobha. So, Shobha can marry either a lawyer or anyone else.

Question 85

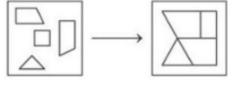
In the question given below, find out which of the figures can be formed from the pieces given in the problem figure.

Options:

Β.

C.

D.



Answer: B

Solution:

Solution:

Figure given in option (b) can be formed by joining the pieces given in question figure, as shown below.

Question 86

Select the option in which the words share the same relationship as that shared by the given pair of words. Barometer : Pressure

Options:

- A. Ammeter : Current
- B. Thermometer : Volume
- C. Voltmeter : Heat
- D. Scale : Seconds

Answer: A

Question 87

Select the option in which the words share the same relationship as that shared by the given set of words. Cat : Lion : Jaguar

Options:

A. Shark : Dolphin : Bat

- B. Sports : Athlete : Javelin
- C. Monkey : Chimpenzee : Gorilla
- D. Reptile : Snake : Toad

Answer: C

Solution:

Solution:

As Cat, Lion and Jaguar belongs to the same species called Cat. Similarly, Monkey, Gorilla and Chimpanzee belong to the same species of animal called Apes.

Question 88

'Needle' is related to 'Sew' in the same way as 'Microsope' is related to '...........'.

Options:

- A. Laboratory
- B. Lens
- C. Science
- D. Magnify
- **Answer: D**

Solution:

Solution:

As, 'Needle' is used for 'Sewing'. Similarly, 'Microscope' is used for 'Magnifying'.

Question 89

Select the option that is related to the fifth number in the same way as the second number is related to the first number and the fourth number is related to the third number. 14:289::17:400::21: ?

```
Options:
```

A. 576

B. 504

C. 570

D. 441

Answer: A

Solution:

```
Solution:
```

```
As, 14 : 289 \Rightarrow 14 + 3 = 17

\Rightarrow 17^2 = 289

And 17 : 400 \Rightarrow 17 + 3 = 20

\Rightarrow 20^2 = 400

Similarly, 21 : ? \Rightarrow 21 + 3 = 24

\Rightarrow 24^2 = 576
```

Question 90

Select the letter-cluster that can replace the question mark (?) in the following series. TXB, QWE, NVH, KUK, ?

Options:

A. ITM

B. JTM

C. HTN

D. HSN

Answer: C

Solution:

Solution:

The pattern of the series is as follows,

 $T \xrightarrow{-3} Q \xrightarrow{-3} N \xrightarrow{-3} K \xrightarrow{-3} H$ $X \xrightarrow{-1} W \xrightarrow{-1} V \xrightarrow{-1} U \xrightarrow{-1} T$ $B \xrightarrow{+3} F \xrightarrow{+3} H \xrightarrow{+3} K \xrightarrow{+3}$ \therefore ? = H T M

Question 91

If α be a root of the equation $4x^2 + 2x - 1 = 0$, then the other root of the equation is

Options:

A. $4\alpha^3 + 2\alpha$

- B. $4\alpha^2 2\alpha$
- C. $4\alpha^3 3\alpha$

D. $4\alpha^3 + 3\alpha$

Answer: C

Solution:

Solution:

 $4x^{2} + 2x - 1 = 0$ $\therefore \alpha + \beta = -\frac{1}{2}, \ \alpha\beta = -\frac{1}{4}....(i)$ Also, $4\alpha^{2} + 2\alpha - 1 = 0$ as α is a root and we have to prove that $\beta = 4\alpha^{3} - 3\alpha$ $= \alpha(1 - 2\alpha) - 2\alpha = -2\alpha^{2} - 2\alpha$ $= -\frac{1}{2}[4\alpha^{2} + 4\alpha] = -\frac{1}{2}[1 - 2\alpha + 4\alpha]$ $= -\frac{1}{2}(1 + 2\alpha) = -\frac{1}{2} - \alpha = \beta$ Now, $\alpha + \beta = -\frac{1}{2}$ [from Eq. (i)] Hence, $\beta = 4\alpha^{3} - 3\alpha$.

Question 92

If A = { x : x is a multiple of 4} and, B = { x : x is a multiple of 6}, then A \cap B consists of multiples of

Options:

Answer: B	
D. 4	
C. 8	
B. 12	
A. 16	

Question 93

If |w| = 2, then the set of points $z = w - \frac{1}{w}$ is contained in or equal to the set of points z satisfying

Options:

A. Im(z) = 0

B. $|\text{Im}(z)| \le 1$

C. $|\text{Re}(z)| \le 2$

D. $|z| \le 3$

Answer: D

Solution:

Solution:

We have,
$$|w| = 2 \Rightarrow w = 2(\cos\theta + i\sin\theta)$$

$$\therefore z = w - \frac{1}{w}$$

$$= 2(\cos\theta + i\sin\theta) - \frac{1}{2}(\cos\theta - i\sin\theta)$$

$$\Rightarrow z = \frac{3}{2}\cos\theta + \frac{5}{2}i\sin\theta$$

$$\Rightarrow |z| = \sqrt{\frac{9}{4} + \frac{25}{4}} = \frac{\sqrt{17}}{2} < 3$$

Hence, option (d) is correct.

Question 94

The value of
$$\lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{x^4}$$
 is

Options:

A. $\frac{1}{6}$

B. $\frac{1}{8}$

C. $\frac{1}{10}$ D. $\frac{1}{12}$

Answer: B

Solution:

Solution:

$$1 - \cos(1 - \cos x) = 2\sin^{2}\left(\frac{1 - \cos x}{2}\right)$$

= $2\sin^{2}\left(\sin^{2}\frac{x}{2}\right)$
 $\therefore \lim_{x \to 0} \frac{1 - \cos(1 - \cos x)}{x^{4}} = \lim_{x \to 0} \frac{2\sin^{2}\left(\sin^{2}\frac{x}{2}\right)}{x^{4}}$
 $= \lim_{x \to 0} \frac{2\sin^{2}\left(\sin^{2}\frac{x}{2}\right)}{\left(\sin^{2}\frac{x}{2}\right)^{2}} \times \frac{\sin^{4}\frac{x}{2}}{\left(\frac{x}{2}\right)^{4} \times 16} \left[\because \lim_{x \to 0} \frac{\sin x}{x} = 1\right]$
 $= \frac{1}{8}$

Question 95

Let a_1, a_2, \dots, a_{40} be in AP and h_1, h_2, \dots, h_{10} be in HP. If $a_1 = h_1 = 2$ and $a_{10} = h_{10} = 3$, then a_4h_7 is

]

Options:

A. 2

B. 3

C. 5

D. 6

Answer: D

Solution:

Let d be the common difference of the AP. Then,

 $a_{10} = 3 \Rightarrow a_1 + 9d = 3$ $\Rightarrow 2 + 9d = 3 \Rightarrow d = \frac{1}{9}$ $\therefore a_4 = a_1 + 3d = 2 + \frac{1}{3} = \frac{7}{3}$ Let *D* be the common difference of $\frac{1}{h_1}$, $\frac{1}{h_2}$, $-\frac{1}{h_{10}}$. Then, $h_{10} = 3$ $\Rightarrow \frac{1}{h_{10}} = \frac{1}{3} \Rightarrow \frac{1}{2} + 9D = \frac{1}{3}$ $\Rightarrow 9D = -\frac{1}{6} \Rightarrow D = -\frac{1}{54}$ $\therefore \frac{1}{h_7} = \frac{1}{h_1} + 6D = \frac{1}{2} - \frac{1}{9} = \frac{7}{18}$ $\Rightarrow h_7 = \frac{18}{7}$ $\therefore a_4 h_7 = \frac{7}{3} \times \frac{18}{7} = 6$

Question 96

The number of terms in the expansion of $(1 + 5\sqrt{2}x)^9 + (1 - 5\sqrt{2}x)^9$

Options:

A. 5

B. 7

C. 9

D. 10

Answer: A

Solution:

Solution:

We have,

 $(1+5\sqrt{2}x)^9 + (1-5\sqrt{2}x)^9$

$$= 2\{{}^{2}C_{0} + {}^{9}C_{2}(5\sqrt{2}x)^{2} + \dots + {}^{9}C_{8}(5\sqrt{2}x)^{8}\}$$

Clearly, it has 5 terms.

Question 97

The number of different seven-digit numbers that can be written using

only the three digit $1\ ,\ 2\ and\ 3$ with the condition that the digit $2\ occurs$ twice in each number is

Options:

- A. ${}^{7}C_{2}2^{5}$
- B. ${}^{7}p_{2}2^{5}$
- C. ${}^{7}C_{2}5^{2}$
- D. None of these

Answer: A

Solution:

Solution:

Others than 2, remaining five places can be filled by 1 and 3 for each place. The number of ways for five places is $2 \times 2 \times 2 \times 2 \times 2 = 2^5$. For 2, selecting 2 places out of 7 is 7C_2 . Hence, the required number of ways is ${}^7C_2 \times 2^5$.

Question 98

Given 2x - y + 2z = 2, x - 2y + z = -4, $x + y + \lambda z = 4$, then the value of λ such that the given system of equation has no solution is

Options:

A. -3

B. 1

C. 0

D. 3

Answer: D

Solution:

Solution:

Since, the system has no solution.

 $\begin{vmatrix} 2 & -1 & 2 \\ 1 & -2 & -1 \\ 1 & 1 & \lambda \end{vmatrix} = 0$ $\Rightarrow 2(-2\lambda + 1) + 1(\lambda + 1) + 2(3) = 0$ $\Rightarrow -4\lambda + 2 + \lambda + 1 + 6 = 0$ $\Rightarrow 3\lambda = 9$ $\Rightarrow \lambda = 3$

Question 99

Let
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
 and $10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha \\ 1 & -2 & 3 \end{bmatrix}$ If B is the inverse of A,

then the value of $\boldsymbol{\alpha}$ is

Options:

A. 4

- В. **-**4
- C. 3
- D. 5

Answer: D

Solution:

Solution:

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\therefore |A| = \begin{vmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= 1(1+3)+1(2+3)+1(2-1)=4+5+1=10$$

$$\Rightarrow AdjA = \begin{bmatrix} 4 & -5 & 1 \\ 2 & 0 & -2 \\ 2 & 5 & 3 \end{bmatrix}^{T} = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$$

$$\Rightarrow B = A^{-1} = \frac{1}{10} \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix} [:A^{-1} = \frac{1}{|A|}AdjA]$$

$$\Rightarrow 10B = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & 5 \\ 1 & -2 & 3 \end{bmatrix}$$

Hence, $\alpha = 5$.

Question 100

If $\mathbf{x} \in \left(0, \frac{\pi}{2}\right)$, then the value of $\cos^{-1}\left(\frac{7}{2}(1 + \cos 2x) + \sqrt{(\sin^2 x - 48\cos^2 x)\sin x}\right)$ is equal to

Options:

A. $x - \cos^{-1}(7 \cos x)$ B. $x + \sin^{-1}(7 \cos x)$ C. $x + \cos^{-1}(6 \cos x)$ D. $x + \cos^{-1}(7 \cos x)$

Answer: A

Solution:

Solution:

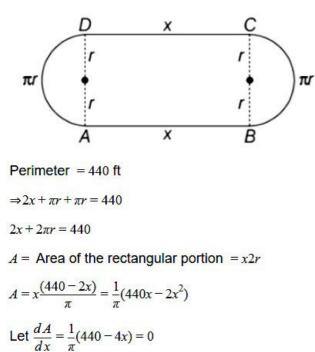
 $y = \cos^{-1}\left(\frac{7}{2}(1 + \cos 2x) + \sqrt{(\sin^2 x - 48\cos^2 x)}\sin x\right)$ = $\cos^{-1}((7\cos x)(\cos x) + \sqrt{1 - 49\cos^2 x} \sqrt{1 - \cos^2 x})$ = $\cos^{-1}(\cos x) - \cos^{-1}(7\cos x)[\because \cos x < 7\cos x]$ = $x - \cos^{-1}(7\cos x)$

Question 101

A running track of 440 ft is to be laid out enclosing a football field, the shape of which is a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum, then the lengths of its side are

Options:

A. 70 ft and 110 ft


B. $80\,\text{ft}$ and $120\,\text{ft}$

C. $35 \, \text{ft}$ and $110 \, \text{ft}$

D. 35 ft and 120 ft

Answer: C

Solution:

$$\Rightarrow x = 110 \text{ for which } \frac{d^2 A}{dx^2} < 0$$

 \Rightarrow *A* is maximum when *x* = 110

$$\Rightarrow 2r = \frac{440 - 2x}{\pi} = \frac{440 - 220}{\frac{22}{7}} = 70$$

 $\therefore r = 35$ ft and x = 110 ft

Question 102

$$\left(\frac{dy}{dx}\right)$$
 tan x = y sec²x + sin x, find general solution

Options:

A. $y = \tan x(\log | \csc x - \cot x | + \cos x + c)$ B. $y = \sec^2 x + \tan x + c$ C. $y = \log | \sec x + \tan x | + \csc x + c$ D. $y = \tan^2 x + \sin x + c$ Answer: A

Solution:

Given that

 $\left(\frac{dy}{dx}\right) \tan x = y \sec^2 x + \sin x$ $\tan \left(\frac{dy}{dx}\right) - y \sec^2 x = \sin x$ $\frac{dy}{dx} + \left(\frac{-\sec^2 x}{\tan x}\right) y = \frac{\sin x}{\tan x}$ Here, $P = \frac{\sec^2 x}{\tan x}$ and $Q = \cos x$ $IF = e^{\int P dx} = e^{\int \frac{-\sec^2 x}{\tan x} dx}$ $IF = e^{-log(\tan x)} = e^{log \cot x} = \cot x$ Now, $y \times IF = \int (Q \times IF) dx + C$ $y \cdot \cot x = \int \cos x \cdot \cot x + C$ $y \cdot \cot x = \int \frac{1 - \sin^2 x}{\sin x} + C$ $y \cdot \cot x = \log | \csc x - \cot x | + \cos x + C$

Question 103

If the straight line y = mx + c touches the parabola $y^2 - 4ax + 4a^3 = 0$, then c is

Options:

A. am + $\frac{a}{m}$

- B. am $\frac{a}{m}$
- C. $\frac{a}{m} + a^2m$
- D. $\frac{a}{m} a^2m$

Answer: D

Solution:

Solving the given equations,

 $(mx+c)^{2} = 4ax - a^{3}$ $\Rightarrow m^{2}x^{2} + 2mc \cdot x + c^{2} = m4ax - 4a^{3}$ $\Rightarrow m^{2}x^{2} + (2mc - 4a)x + c^{2} + 4a^{3} = 0$ Since the straight line touches the parabola at a point, so, the discriminant = 0 $\Rightarrow (2mc - 4a)^{2} - 4m^{2}(c^{2} + 4a^{3}) = 0$ $\Rightarrow 4m^{2}c^{2} - 16amc + 16a^{2} - 4m^{2}c^{2} - 16a^{3}m^{2} = 0$ $\Rightarrow -mc + a - a^{2}m^{2} = 0$ $\Rightarrow mc = a - a^{2}m^{2} \Rightarrow c = \frac{a}{m} - a^{2}m$

Question 104

A normal is drawn at the point P to the parabola $y^2 = 8x$, which is inclined at 60° with the straight line y = 8. Then the point P lies on the straight line

Options:

- A. $2x + y 12 4\sqrt{3} = 0$
- B. $2x y 12 + 4\sqrt{3} = 0$
- C. $2x y 12 4\sqrt{3} = 0$

D. None of these

Answer: C

Solution:

Solution:

For the parabola $y^2 = 4ax$, the equation of normal at $P(am^2, -2am)$ is $y = mx - 2am - am^3$.

Here, $m = tan60^\circ = \sqrt{3}$

$$\therefore P \equiv (a(\sqrt{3})^2, -2a(\sqrt{3})) \equiv (6, -4\sqrt{3})(\because a = 2)$$

Thus, P satisfies $2x - y - 12 - 4\sqrt{3} = 0$

Question 105

The value of $\int \frac{1}{x^1} dx$, is $[(x - 1)^3 (x + 2)^5]^{\frac{1}{4}}$

Options:

A.
$$\frac{4}{3} \left(\frac{x+1}{x-2} \right)^{\frac{1}{4}} + C$$

B. $\frac{3}{4} \left(\frac{x-1}{x+2} \right)^{\frac{1}{4}} + C$
C. $\frac{4}{3} \left(\frac{x-1}{x+2} \right)^{\frac{1}{4}} + C$
D. $\frac{1}{3} \left(\frac{2x-1}{4x-3} \right)^{\frac{1}{4}} + C$

Answer: C

Solution:

Solution:

$$I = \int \frac{1}{\left(\frac{x-1}{x+2}\right)^{\frac{3}{4}} (x+2)^{2}} dx$$

Let $\frac{x-1}{x+2} = t \Rightarrow \frac{3dx}{(x+2)^{2}} = dt$
 $\Rightarrow I = \frac{1}{3} \int \frac{1}{\frac{3}{4}} dt = \frac{1}{3} \left(\frac{t^{\frac{1}{4}}}{\frac{1}{4}}\right) + C$
 $= \frac{4^{\frac{1}{4}}}{3} + C = \frac{4}{3} \left(\frac{x-1}{x+2}\right)^{\frac{1}{4}} + C$

Question 106

The area of the region bounded by the parabola $(y - 2)^2 = (x - 1)$, the tangent to the parabola at the point (2, 3) and the X -axis is

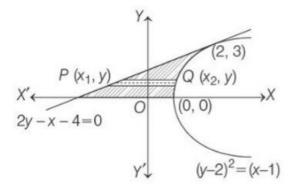
Options:

A. 3

B. 6

C. 9

D. 12


Answer: C

Solution:

The equation of the parabola is $y^2 - 4y - x + 5 = 0$

The equation of tangent at (2, 3) is

$$3y - 2(y+3) - \frac{x+2}{2} + 5 = 0$$
$$2y - x - 4 = 0$$

.. Required area A is given by

 $A = \int_0^3 (x_2 - x_1) dy$ $\Rightarrow A = \int_0^3 [\{(y - 2)^2 + 1\} - \{2y - 4\}] dy$ $\Rightarrow A = \int_0^3 (y^2 - 6y + 9) dy = \int_0^3 (3 - y)^2 dy$ $= -\left[\frac{(3 - y)^3}{3}\right]_0^3 = 9$

Question 107

 \hat{u} and \hat{v} are two non-collinear unit vectors such that $\left| \frac{\hat{u} + \hat{v}}{2} + \hat{u} \times \hat{v} \right| = 1$. Then the value of $\left| \hat{u} \times \hat{v} \right|$ is equal to

Options:

A.
$$\left| \frac{\hat{u} + \hat{v}}{2} \right|$$

- B. $|\hat{u} + \hat{v}|$
- $C. \left| \hat{u} \hat{v} \right|$
- D. $\left| \frac{\hat{u} \hat{v}}{2} \right|$

Answer: D

Solution:

Given that, $\left|\frac{\hat{u}+\hat{v}}{2}+\hat{u}\times\hat{v}\right|=1$ $\Rightarrow \left|\frac{\hat{u}+\hat{v}}{2}+\hat{u}\times\hat{v}\right|^{2}=1$ $\Rightarrow \frac{2+2\cos\theta}{4}+\sin^{2}\theta=1\left[\because\hat{u}.(\hat{u}\times\hat{v})=\hat{v}(\hat{u}\times\hat{v})=0\right]$ $\Rightarrow \cos^{2}\frac{\theta}{2}=\cos2\theta$ $\Rightarrow \theta=n\pi\pm\frac{\theta}{2}, n\in\mathbb{Z}$ $\Rightarrow \theta=\frac{2\pi}{3}$ $\Rightarrow \left|\hat{u}\times\hat{v}\right|=\sin\frac{2\pi}{3}=\sin\frac{\pi}{3}=\left|\frac{\hat{u}-\hat{v}}{2}\right|$

Question 108

A six faced die is a biased one. It is thrice more likely to show an odd numbers than show an even number. It is thrown twice. The probability that the sum of the numbers in two throws is even, is

Options:

A. $\frac{5}{9}$ B. $\frac{5}{8}$

C.
$$\frac{1}{2}$$

D. None of these

Answer: B

Solution:

Solution:

Let P be the probability of getting an even number. Then by hypothesis the probability of getting an odd number is 3P. Since the events of getting an even number and an odd number are mutually exclusive and exhaustive.

 $\therefore P + 3P = 1 \Rightarrow P - 1/4$

Thus, the probability of getting an odd number in a single throw is 3/4 and that of an even number is 1/4.

If the die is thrown twice, then the sum of the numbers in two throws is even if both the numbers are even or both are odd.

 $\therefore \text{ Required probability } = \frac{3}{4} \times \frac{3}{4} + \frac{1}{4} \times \frac{1}{4} = \frac{10}{16} = \frac{5}{8}.$

Question 109

The sum of all the solution of the equation $\cos\theta\cos\left(\frac{\pi}{3}+\theta\right)\cos\left(\frac{\pi}{3}-\theta\right) = \frac{1}{4}, \theta \in [0, 6\pi]$

Options:

- А. 15п
- В. 30п
- C. $\frac{100\pi}{3}$
- D. None of these

Answer: B

Solution:

Solution:

 $2\cos\theta[\cos 120^\circ + \cos 2\theta] = 1$ $\Rightarrow 2\cos\theta\left(-\frac{1}{2} + 2\cos^2\theta - 1\right) = 1$ $\Rightarrow 4\cos^3\theta - 3\cos\theta - 1 = 0$ $\Rightarrow 3\theta = 2n\pi \text{ or } \theta = \frac{2n\pi}{3}, n \in z$

Given the values so that 2n does not exceed 18.

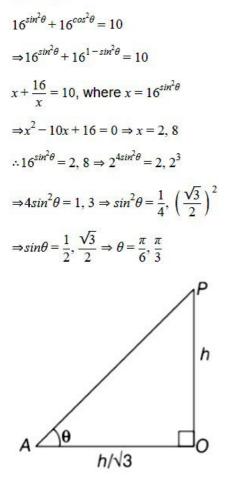
Hence, the sum $=\frac{2\pi}{3}\Sigma_1^{9}n = \frac{2\pi}{3} \times \frac{9(9+1)}{2} = 30\pi$

Question 110

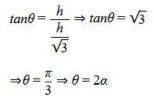
Let α be the solution of $16^{\sin^2\theta} + 16^{\cos^2\theta} = 10$ in $\left(0, \frac{\pi}{4}\right)$. If the shadow of a vertical pole is $\frac{1}{\sqrt{3}}$ of its height, then the altitude of the sun is

Options:

Α. α


- B. $\frac{\alpha}{2}$
- C. 2α

D. $\frac{\alpha}{3}$


Answer: C

Solution:

We have,

Let the altitude of the sum be θ . Then,

Question 111

For each parabola $y = x^2 + px + q$, meeting coordinate axes at 3-distinct points, if circles are drawn through these points, then the family of circles must pass through

Options:

A. (1, 0)

B. (0, 1)

C. (1, 1)

D. (p, q)

Answer: B

Solution:

Suppose the parabola $y = x^2 + px + q$ cuts X-axis at $A(\alpha, 0)$ and $B(\beta, 0)$. Then, α , β are roots of the equation $x^2 + px + q = 0$ $\therefore \alpha + \beta = -p \text{ and } \alpha \beta = q$ The parabola $y = x^2 + px + q$ cuts Y-axis at (0, q). Let the equation of the circle passing through A, B and C be $x^{2} + y^{2} + 2gx + 2fy + c = 0....(i)$ $\therefore a^2 + 2ga + c = 0......(ii)$ $\beta^2 + 2g\beta + c = 0....(iii)$ and $q^2 + 2fq + c = 0...(iv)$ Subtracting Eq. (iii) from Eq. (ii), we get $\alpha + \beta + 2g = 0$ $\Rightarrow g = \frac{p}{2}$ Adding Eqs. (ii) and (iii), we get $\alpha^2 + \beta^2 + 2g(\alpha + \beta) + 2c = 0$ $(\alpha + \beta)^2 - 2\alpha\beta + 2g(\alpha + \beta) + 2c = 0$ $p^2-2q-p^2+2c=0$ $\left[\because \alpha+\beta=pand g=\frac{p}{2}\right]$ Putting c = q in Eq. (iv), we get $f = -\left(\frac{q+1}{2}\right)$ Substituting the values of g, f and c in Eq. (i), we obtain the equation of family of circles passing through A, B and C as $x^{2}+y^{2}+px-(q+1)y+q=0$

 $x^{2}+y^{2}+px-(q+1)y+q=0$ Clearly, it passes through (0, 1).

Question 112

The number of ways of arranging letters of the word HAVANA so that V and N do not appear together is

Options:

A. 40

B. 60

C. 80

D. 100

Answer: C

Solution:

We can arrange the letters H, A, A, A in 4!/3! = 4 WAYS

If one possible arrangement is XXXX Then, we can arrange, V,N at any of the two places marked with O in the following arrangement $O \times O \times O \times O \times O$ Thus, we can arrange V and N in ${}^{5}P_{2} = 20$ ways. Thus, the number of ways in which letters can be arranged is $4 \times 20 = 80$

Question 113

Let a_1 , a_2 , a_3 ... be a harmonic progression with $a_1 = 5$ and $a_{20} = 25$. The least positive integer n for which $a_n < 0$, is

Options:

- A. 22
- B. 23
- C. 24
- D. 25
- Answer: D

Solution:

It is given that a_1, a_2, a_3, \dots are in *HP*.

Therefore, $\frac{1}{a_1}, \frac{1}{a_2}, \frac{1}{a_3}, \dots$ are in *AP*

Let d be the common difference of the AP.

$$\therefore \frac{1}{a_n} = \frac{1}{a_1} + (n-1)d \text{ and } \frac{1}{a_{20}} = \frac{1}{a_1} + 19d$$

$$\Rightarrow \frac{1}{a_n} = \frac{1}{5} + (n-1)d \text{ and } \frac{1}{25} = \frac{1}{5} + 19d$$

$$\Rightarrow \frac{1}{a_n} = \frac{1}{5} + (n-1)d \text{ and } d = \frac{-4}{19 \times 25}$$

$$\Rightarrow \frac{1}{a_n} = \frac{1}{5} - \frac{4(n-1)}{19 \times 25}$$

$$\Rightarrow \frac{1}{a_n} = \frac{95 - 4n + 4}{19 \times 25}$$

$$\Rightarrow a_n = \frac{99 - 4n}{19 \times 25}$$
Now, $a_n < 0$

$$\Rightarrow \frac{99 - 4n}{19 \times 25} < 0$$

$$\Rightarrow 99 - 4n < 0$$

$$\Rightarrow 4n > 99$$

$$\Rightarrow n > 24\frac{3}{4} \Rightarrow n \ge 25$$

Question 114

If the plane 3x + y + 2z + 6 = 0 is parallel to the line $\frac{3x-1}{2b} = 3 - y = \frac{z-1}{a}$, then the value of 3a + 3b is

Options:

A. $\frac{1}{2}$

B. $\frac{3}{2}$

C. 3

D. 4

Answer: B

Solution:

Given plane 3x + y + 2z + 6 = 0

and line
$$\frac{x - \frac{1}{3}}{\frac{2b}{3}} = \frac{y - 3}{-1} = \frac{z - 1}{a}$$

Since, plane is parallel to line, then

$$3\left(\frac{2b}{3}\right) + (1)(-1) + 2(a) = 0$$

$$2b - 1 + 2a = 0$$

$$\Rightarrow a + b = \frac{1}{2}$$

Now, $3a + 3b = \frac{3}{2}$

Question 115

Let a, b be the solutions of $x^2 + px + 1 = 0$ and c, d be the solution of $x^2 + qx + 1 = 0$. If (a - c)(b - c) and (a + d)(b + d) are the solution of $x^2 + ax + \beta = 0$, then β is equal to

Options:

A. p + qB. p - qC. $p^{2} + q^{2}$ D. $q^{2} - p^{2}$

Answer: D

Solution:

```
Since, a + b = -p, ab = 1....(i)

and c + d = -q, cd = 1

Now (a - c)(b - c) and (a + d)(b + d) are

the roots of x^2 + ax + \beta = 0

(a - c)(b_c)(a + d)(b + d) = \beta

\Rightarrow (ab - ac - bc + c^2)(ab + ad + bd + d^2) = \beta

\Rightarrow \{1 - c(a + b) + c^2\}\{1 + d(a + b) + d^2\} = \beta

\Rightarrow (1 + pc + c^2)(1 - pd + d^2) = \beta

\Rightarrow 1 - pd + d^2 + pc - p^2cd + pcd^2 + c^2 - pc^2d + c^2d^2 = \beta

\Rightarrow 1 - pd + d^2 + pc - p^2 + pd + c^2 - pc + 1 = \beta[\because cd = 1]

\Rightarrow 2 + d^2 + c^2 - p^2 = \beta

\Rightarrow 2cd + c^2 + d^2 - p^2 = \beta

(c + d)^2 - p^2 = \beta

q^2 - p^2 = \beta[\because (c + d) = -q]
```

Question 116

If $\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, then

Options:

A. a = 1, b = 1

B. a = sin 2 θ , b = cos 2 θ

C. a = $\cos 2\theta$, b = $\sin 2\theta$

D. None of these

Answer: C

Solution:

Given,

$$\begin{bmatrix} 1 & -tan\theta \\ tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & tan\theta \\ -tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & -tan\theta \\ tan\theta & 1 \end{bmatrix} \cdot \frac{1}{1 + tan^{2}\theta} \begin{bmatrix} 1 & -tan\theta \\ tan\theta & 1 \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

$$\Rightarrow \frac{1}{1} + tan^{2}\theta \begin{bmatrix} 1 - tan^{2}\theta & -2tan\theta \\ 2tan\theta & 1 - tan^{2}\theta \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \frac{1 - tan^{2}\theta}{1 + tan^{2}\theta} \frac{2tan\theta}{1 + tan^{2}\theta} \\ \frac{2tan\theta}{1 + tan^{2}\theta} \frac{1 - tan^{2}\theta}{1 + tan^{2}\theta} \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} cos2\theta & -sin2\theta \\ sin2\theta & cos2\theta \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

$$\Rightarrow a = cos2\theta, b = sin2\theta$$

Question 117

The value of
$$\lim_{x \to 0} \frac{(1+x)^{\frac{1}{x}} - e + \frac{1}{2}ex}{x^2}$$
 is

Options:

A. $\frac{11}{24}e$

B.
$$-\frac{11}{24}$$
e

C.
$$\frac{e}{24}$$

D. None of these

Answer: A

Solution:

Solution:

Let $y = (1+x)^{\frac{1}{x}}$ $\Rightarrow l \, ogy = \frac{1}{x} \log(1+x) = \frac{1}{x} \left[x = \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \right]$ $= 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \dots$ $y = e^{\left(1 - \frac{x}{2} + \frac{x^2}{3} + \dots\right)} = e^{\left(-\frac{x}{2} + \frac{x^2}{3} - \dots\right)}$ $= e^{\left[1 + \left(-\frac{x}{2} + \frac{x^2}{3} - \dots\right) + \frac{1}{2!} \left(-\frac{x}{2} + \frac{x^2}{3} - \dots\right)^2 + \dots\right]}$ $y - e + \frac{1}{2}e^x = e^{x^2} \left[\frac{1}{3} + 0(x) + \frac{1}{2} \left(-\frac{1}{2} + 0(x)\right)^2 + \dots\right]$ $[\because 0(x) \text{ in terms containing } x]$ $\lim \frac{y - e + \frac{1}{2}e^x}{x^2} = e^{\left[\frac{1}{3} + \frac{1}{8}\right]} = \frac{11}{24}e^{\frac{1}{3}}$

Question 118

The locus of the mid-point of the chord if contact of tangents drawn from points lying on the straight line 4x - 5y = 20 to the circle $x^2 + y^2 = 9$ is

Options:

A.
$$20(x^{2} + y^{2}) - 36x + 45y = 0$$

B. $20(x^{2} + y^{2}) + 36x - 45y = 0$
C. $36(x^{2} + y^{2}) - 20x + 45y = 0$
D. $36(x^{2} + y^{2}) + 20x - 45y = 0$

Answer: A

Solution:

Let $P(t, 4t - \frac{20}{5})$ be a point on the line 4x - 5y = 20. Then the chord of contact of tangents drawn from P to the circle $x^2 + y^2 = 9$ is $tx(4t - \frac{20}{5})y = 9...(i)$

Let $\theta(h, k)$ be the mid-point of this chord of contact, then its equation is also $hx + ky = h^2 + k^2 \dots (ii)$ Clearly Eqs. (i) and (ii) represent the same line

$$\begin{aligned} \therefore \frac{t}{h} &= \frac{4t - 20}{5k} = \frac{9}{h^2 + k^2} \\ \Rightarrow \frac{t}{h} &= \frac{9}{h^2 + k^2} \text{ and } \frac{t}{h} = \frac{4t - 20}{5k} \\ \Rightarrow t &= 9\frac{h}{h^2 + k^2} \text{ and } t = \frac{20h}{4h - 5k} \\ \Rightarrow 9\frac{h}{h^2 + k^2} &= \frac{20h}{4h - 5k} \\ \Rightarrow h\{20(h^2 + k^2) - 36h + 45k\} = 0 \\ x &= 0, \text{ or}[20(x^2 + y^2) - 36x + 45y] = 0 \end{aligned}$$

Question 119

Let $f(x) = \int \frac{x^2 dx}{(1+x^2)(1+\sqrt{1+x^2})}$ and f(0) = 0, then the value of f(1) be

Options:

- A. $\log(1 + \sqrt{2})$
- B. $\log(1 + \sqrt{2}) \frac{\pi}{4}$
- C. $\log(1 + \sqrt{2}) + \frac{\pi}{2}$
- D. None of these

Answer: B

Solution:

$$f(x) = \int \frac{x^2 dx}{(1+x^2)(1+\sqrt{1+x^2})}$$

Let $x = tan\theta$

$$\Rightarrow dx = sec^2\theta d\theta = (1+x^2)d\theta$$

$$f(x) = \int \frac{x^2 dx}{(1+x^2)(1+\sqrt{1+x^2})}$$

$$= \int \frac{tan^2\theta sec^2\theta d\theta}{sec^2\theta(1+sec\theta)} = \int \frac{tan^2\theta d\theta}{1+sec\theta}$$

$$= \int \frac{sin^2\theta d\theta}{cos\theta(1+cos\theta)}$$

$$= \int \frac{1-cos^2\theta d\theta}{cos\theta(1+cos\theta)}$$

$$= \int \frac{1-cos^{\theta} d\theta}{cos\theta(1+cos\theta)}$$

$$= \int \frac{(1-cos\theta) d\theta}{cos\theta}$$

$$= \int sec\theta d\theta - \int d\theta$$

$$= \log(x+\sqrt{1+x^2}) - tan^{-1}x + C$$

$$\therefore f(0) = \log(0+\sqrt{1+0}) - tan^{-1}(0) + C$$

$$0 = \log 1 - 0 + C$$

$$\Rightarrow C = 0$$

$$\therefore f(1) = \log(1+\sqrt{1+1^2}) - tan^{-1}(1)$$

$$= \log(1+\sqrt{2}) - \frac{\pi}{4}$$

Question 120

The mean of five observations is 4 and their variance is 5.2. If three of these observations are 1,2 and 6, then the other two are

Options:

A. 2 and 9

- B. 3 and 8
- $C.\ 4 \ and \ 7$
- $D.\;5\;and\;6$
- Answer: C

Solution:

Let the two unknown items be x and y. Then,

Mean $= 4 \Rightarrow \frac{1+2+6+x+y}{5} = 4$ $\Rightarrow x+y = 11...(i)$ and variance = 5.2 $\Rightarrow \frac{1^2+2^2+6^2+x^2+y^2}{5} - (mean)^2 = 5.2$ $\Rightarrow 41+x^2+y^2 = 5(5.2+16)$ $\Rightarrow 41+x^2+y^2 = 106$ $\Rightarrow x^2+y^2 = 65...(ii)$ On solving Eqs. (i) and (ii), we get x = 4, y = 7 or x = 7, y = 4

Question 121

In a sequence of 21 terms, the first 11 terms are in AP with common difference 2 and the last 11 terms are in GP with common ratio 2. If the middle term of AP be equal to the middle term of the GP, then the middle term of the entire sequence is

Options:

A. $-\frac{10}{31}$ B. $\frac{10}{31}$ C. $\frac{32}{31}$ D. $-\frac{31}{32}$

Answer: A

Solution:

Since, the first 11 terms are Ap, d = 2

 $a_{11} = a + 10d = a + 20$

The middle term of AP is

 $T_6 = a + 5d = a + 10$

For the next 11 terms in GP

r = 2

: The middle term of GP is $b(2)^5$ where, b is the first term of a GP which is the last term of AP

 $b(2)^5 = (a+20)32$

According to the given condition,

 $\Rightarrow a+10 = (a+20)32$

 $\Rightarrow 32a = 10 - 640$

$$a = -\frac{630}{31}$$

... Middle term of entire sequence is 11th term

$$\therefore T_{11} = \frac{-630}{31} + 10 \times d$$
$$= \frac{-630}{31} + 10 \times 2 = \frac{-10}{31}$$

Question 122

If $p \neq a$, $q \neq b$, $r \neq c$ and the system of equations px + ay + az = 0 bx + qy + bz = 0 cx + cy + rz = 0has a non-trivial solution, then the value of $\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c}$ is

Options:

A. 1

B. 2

C. $\frac{1}{2}$

D. 0

Answer: B

Solution:

As the given system of equations has a non-trivial solution.

$$\Delta = \begin{vmatrix} p & a & a \\ b & q & b \\ c & c & r \end{vmatrix} = 0$$

Applying $C_2 \to C_2 - C_1$ and $C_3 \to C_3 - C_1$

$$\Delta = \begin{vmatrix} p & a - p & a - p \\ b & q - b & 0 \\ c & 0 & r - c \end{vmatrix} = 0$$

Expanding along C_3 , we get

 $(a-p) \begin{vmatrix} b & q-b \\ c & 0 \end{vmatrix} + (r-c) \begin{vmatrix} p & a-p \\ b & q-b \end{vmatrix} = 0$ $\Rightarrow (a-p)(-c)(q-b) + (r-c)$ $\{p(q-b) - b(a-p)\} = 0$ $\Rightarrow (p-a)(q-b)c + p(r-c)(q-b) + b(r-c)(p-a) = 0$ Dividing by (p-a)(q-b)(r-c), we get $\frac{c}{r-c} + \frac{p}{p-a} + \frac{b}{q-b} = 0$ $\Rightarrow \frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = \frac{q-b}{q-b} + \frac{r-c}{r-c} = 2$

Question 123

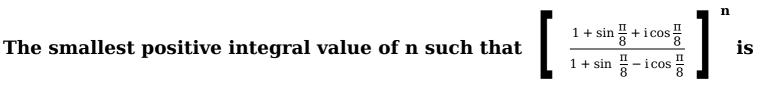
If $g(x) = x^2 + x - 2$ and $\frac{1}{2}g \circ f(x) = 2x^2 - 5x + 2$, then f(x) is equal to

Options:

A. 2x – 3

B. 2x + 3

C. $2x^2 + 3x + 1$


D. $2x^2 - 3x + 1$

Answer: A

Solution:

We have, $\frac{1}{2}gof(x) = 2x^2 - 5x + 2$ $\Rightarrow g(f(x)) = 4x^2 - 10x + 4$ $\Rightarrow (f(x))^{2} + f(x) - 2 = 4x^{2} - 10x + 4$ $\Rightarrow (f(x))^{2} + f(x) - (4x^{2} - 10x + 6) = 0$ $\Rightarrow f(x) = \frac{-1 \pm \sqrt{1 + 4(4x^2 - 10x + 6)}}{2}$ $\Rightarrow f(x) = \frac{-1 \pm \sqrt{16x^2 - 40x + 25}}{2}$ $\Rightarrow f(x) = \frac{-1 \pm (4x - 5)}{2} = 2x - 3, -2x + 2$ Hence, f(x) = 2x - 3

Question 124

purely imaginary, is equal to

Options:

A. 4

B. 3

C. 2

D. 8

Answer: A

Solution:

 $\begin{bmatrix} \frac{1+\sin\frac{\pi}{8}+\cos\frac{\pi}{8}}{1+\sin\frac{\pi}{8}-\cos\frac{\pi}{8}} \end{bmatrix}^{n} = \begin{bmatrix} \frac{1+\cos\alpha+i\sin\alpha}{1+\cos\alpha-i\sin\alpha} \end{bmatrix}^{n}$ $\begin{bmatrix} \because \alpha = \frac{\pi}{2} - \frac{\pi}{8} \end{bmatrix}$ $= \begin{bmatrix} \frac{2\cos^{2}\frac{\alpha}{2}+2i\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}}{2\cos^{2}\frac{\alpha}{2}-2i\sin\frac{\alpha}{2}\cos\frac{\alpha}{2}} \end{bmatrix}^{n}$ $= \begin{bmatrix} \frac{\cos\frac{\alpha}{2}+i\sin\frac{\alpha}{2}}{\cos\frac{\alpha}{2}-i\sin\frac{\alpha}{2}} \end{bmatrix}^{n} = \begin{pmatrix} e^{2i\frac{\alpha}{2}} \end{pmatrix}^{n} = e^{in\alpha}$ $= e^{in\left(\frac{3\pi}{8}\right)} = \cos\frac{3n\pi}{8} + i\sin\frac{3n\pi}{8}$

For n = 4 we get imaginary part.

Question 125

A house subtends a right angle at the window of a opposite house and the angle of elevation of the window from the bottom of the first house is 60. If the distance between two houses be 6m, then the height of the first house is

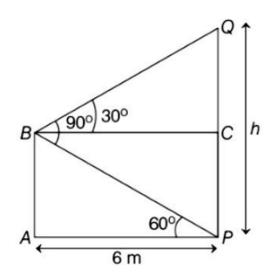
Options:

A. 8√3m

B. 6√3m

C. 4√3m

D. None of these


Answer: A

Solution:

Solution:

Let PQ be the house subtending a right angle at the window B of opposite house AB

In *APAB*, we have

 $tan60^\circ = \frac{AB}{6} = AB = 6\sqrt{3}m$

In ⊿CBQ, we have

$$tan30^{\circ} = \frac{h - CP}{BC}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h - 6\sqrt{3}}{6} [::AB = CP, BC = AP]$$

$$\Rightarrow h = 6\left(\sqrt{3} + \frac{1}{\sqrt{3}}\right)$$

$$\Rightarrow h = 8\sqrt{3}m$$

Question 126

A spherical balloon is filled with 4500π cubic meters of helium gas. If a leak in the balloon causes the gas to escape at the rate of 72π cubic meters per minute then the rate (in meters per minute) at which the radius of the balloon decreases $49 \min$ after the leakage began is

Options:

A. $\frac{9}{7}$ B. $\frac{7}{9}$ C. $\frac{2}{9}$ D. 9 Answer: C

Solution:

 $V = \frac{4}{2}\pi r^3 \Rightarrow 4500\pi = \frac{4\pi r^3}{3}$ $\Rightarrow r = 15m$ After $49min = (4500 - 49.72)\pi$ $= 972\pi m^3$ $\Rightarrow 952\pi = \frac{4}{3}\pi r^3$ $\Rightarrow r^3 = 3 \times 243 = 3 \times 3^5$ r = 9 $\frac{dv}{dt} = 4\pi r^2 \left(\frac{dr}{dt}\right)$ $72\pi = 4\pi \times 9 \times 9 \left(\frac{dr}{dt}\right)$ $\frac{dr}{dt} = \left(\frac{2}{9}\right)$

Question 127

If in a $\triangle ABC$, $2b^2 = a^2 + c^2$, then $\frac{\sin 3B}{\sin B}$ is equal to

Options:

A. $\frac{c^2 - a^2}{2ca}$ B. $\frac{c^2 - a^2}{ca}$

C. $\frac{(c^2 - a^2)^2}{(ca)^2}$

D. $\left[\frac{c^2-a^2}{2ca}\right]^2$

Answer: D

Solution:

 $\frac{\sin 3B}{\sin B} = \frac{3\sin B - 4\sin^3 B}{\sin B}$ = 3 - 4sin²B = 3 - 4(1 - cos²B) = -1 + $\frac{4(a^2 + c^2 - b^2)^2}{4(ac)^2}$ = -1 + $\frac{\left(\frac{a^2 + c^2}{2}\right)^2}{(ac)^2}$ = -1 + $\frac{(a^2 + c^2)^2}{4(ac)^2}$ = $\left(\frac{c^2 - a^2}{2ac}\right)^2$

Question 128

If the sum of the coefficients in the expansion of $(x + y)^n$ is 1024 , then the value of the greatest coefficient in the expansion is

Options:

A. 356

B. 252

C. 210

D. 120

Answer: B

Solution:

Solution:

Given, sum of the coefficient = 1024

i.e. $2^n = 1024 = 2^{10}$

 $\Rightarrow n = 10$

Since, n is even, so greatest coefficient

$$=^{n} C_{\frac{n}{2}} = {}^{10} C_{5} = 252$$

Question 129

The area enclosed by the curves $y = \sin x + \cos x$ and $y = |\cos x - \sin x|$ over the interval $\begin{bmatrix} 0, \frac{\pi}{2} \end{bmatrix}$ is

Options:

- A. $4(\sqrt{2} 1)$ B. $2\sqrt{2}(\sqrt{2} - 1)$
- C. $2(\sqrt{2} + 1)$
- D. $2\sqrt{2}(\sqrt{2} + 1)$

Answer: B

Solution:

Solution:

Given, y = sinx + cosx, $x \in \left[0, \frac{\pi}{2}\right]$ $\frac{dy}{dx} = cosx - sinx$ y = |cosx - sinx| $= \begin{bmatrix} cosx - sinx & x \in \left[0, \frac{\pi}{4}\right] \\ sinx - cosx & x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \end{bmatrix}$ $\frac{-}{0} + \frac{+}{0} + \frac{-}{\pi/4} + \frac{\pi}{2}$ \therefore Required area

$$= \int_{0}^{\frac{\pi}{4}} \left| (\sin x + \cos x) - (\cos x - \sin x) \right| dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left| 2\cos x \right| dx$$

$$= \int_{0}^{\frac{\pi}{4}} \left| 2\sin x \right| dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \left| 2\cos x \right| dx$$

$$= 2 \left[-\frac{1}{\sqrt{2}} + 1 + 1 - \frac{1}{\sqrt{2}} \right]$$

$$y = \sqrt{2} \sin (x = \pi/4)$$

$$\sqrt{2}$$

$$y = \sqrt{2} (\cos (x + \pi/4))$$

$$= 2 \left(2 - \frac{2}{\sqrt{2}} \right)$$

$$= 2(2 - \sqrt{2})$$

$$= 4 - 2\sqrt{2}$$

$$= 2\sqrt{2}(\sqrt{2} - 1)$$

Question 130

If α, β, $\gamma \in [0, \pi]$ and if α, β, γ are in AP, then $\frac{\sin \alpha - \sin \gamma}{\cos \gamma - \cos \alpha}$
--

Options:

- A. sin β
- B. $\cos\beta$
- $C.\ cot\beta$
- D. $2\cos\beta$

Answer: C

Solution:

Solution:

 $\frac{\sin a - \sin \gamma}{\cos \gamma - \cos a} = \frac{2\cos \frac{a + \gamma}{2}\sin a - \frac{\gamma}{2}}{2\sin \frac{a + \gamma}{2} \cdot \sin \frac{a - \gamma}{2}}$ $= \cot a + \frac{\gamma}{2}$ $\left[\because \sin A - \sin B = 2\cos \left(\frac{A + B}{2}\right) \sin \left(\frac{A - B}{2}\right)$ and $\cos A - \cos B = 2\sin \left(\frac{A + B}{2}\right) \sin \left(\frac{B - A}{2}\right) \right]$ But a, β, γ are in AP $\Rightarrow \frac{a + \gamma}{2} = \beta$

So, required value is $cot\beta$.
