

click to campus

AEEE 2017 Question Paper PDF

Amrita Engineering Entrance Examination (AEEE)

Download more AEEE Previous Year Question Papers: Click Here

Amrita VISHWA VIDYAPEETHAM

(University established u/s 3 of UGC Act 1956)

Amrita Entrance Examination – Engineering

PHYSICS, CHEMISTRY & MATHEMATICS

	<u> </u>		
Question booklet Version Code	Question booklet no.		Time : 3 hrs
Number of pages	Number of questions	120	Max. Marks: 360
Registration number			
Name of the candidate			
Signature of the candid	ate		

INSTRUCTIONS TO THE CANDIDATES

GENERAL

- 1. Any malpractice or attempt to commit malpractice in the examination hall will lead to disqualification of the candidate.
- 2. Candidates are not allowed to carry any textual material, printed or written bits of papers, Mathematical and Physical Tables, electronic gadgets like calculator, cell phone, etc. into the examination hall.
- 3. Candidates shall possess the University Hall Ticket which should be produced on demand.
- 4. Candidates shall occupy the respective seats bearing their registration numbers on time.
- 5. Candidates shall sign the attendance sheet available with the invigilator.
- 6. Candidates are not permitted to leave the hall before the end of the examination.
- 7. Candidates are required to handover the ANSWER SHEET and the QUESTION BOOKLET to the invigilator before leaving the hall.
- 8. After submitting the answer sheet, candidates shall affix their left thumb impression on the attendance sheet.

QUESTION BOOKLET

- 9. DO NOT OPEN THE SEALED QUESTION BOOKLET UNTIL THE INVIGILATOR ANNOUNCES TO DO SO.
- 10. **Before opening the Question Booklet,** write the Registration Number, Name and Signature using ball pen in the space provided at the top of this page.
- 11. **Immediately after opening the booklet,** the candidate should examine whether it contains all the 120 questions in serial order and ---- pages as mentioned at the top of this page. In case of unprinted, torn or missing pages in the booklet, the matter should be reported to the invigilator immediately.
- 12. Rough work may be done on the space provided in this booklet.

(Continued on the last page of this question booklet)

MODEL QUESTIONS

PHYSICS (S.No.1 to 35) 35 Questions

Cha	ta: celeration due to gravity = arge of electron = 1.6 x 10 $V = 1.6 \times 10^{-19} \text{ J}$	10m/s ² , Mass of elect	ron = 9.1×10^{-31} kg c, c = 3×10^{8} m/s	
1.	Which of the following has a) $A^2s^4kg^{-1}m^{-2}$	as the dimensionality of b) A ⁻² kg m ² s ³		d) kg m 3 A $^{-2}$ s 2
2.	Choose the correct combinal Earth (29.8); Saturn(9.65); Saturn(29.65); Saturn(29.65); Saturn(9.65);	65); Venus(35.0); Mar 0.8); Venus(35.0); Mar 65); Venus(35.0); Mar	s(24.2) s(24.2) s(29.8)	peed(in km s ⁻¹)
3.	At a point 3200 km verti of earth in SI units is	cally above the surface	e of the earth, accelera	ation due to gravity
	a) 6.66	b) 3.33	c) 5.55	d) 4.44
4.	Two laser beams one of v photons. Their powers are a) 64:40	_	ad the other 400 nm ha	ve same unit flux of d) 25:64
	,	,	,	u) 23.04
5.	The relation, Work Done a) isothermal process c) isobaric process	= Change in internal e	b) adiabatic process d) isochoric process	
6.	The rate of flow of volumlength L due to pressure used and ΔP is doubled to	difference ΔP is $(\Delta V/A)$	Δt). If a pipe of radius crease by a factor	2r and length 2L is
	a) 2	b) 4	c) 8	d) 16
7.	If the charge Q in a capac	itor is doubled, electri	c field energy stored in	iside
	a) doublesc) remains unchanged		b) increases by factor d) increases by factor	
8.	A capacitor with C = 0.14 of 1.0Ω . What is the time	, , ,		•
	a) 10^{-7} s	b) 0.144 x10 ⁻⁶ s	c) $2.1 \times 10^{-7} \text{s}$	d) 0.144 x 10 ⁻⁷ s
Ro	ough Work			

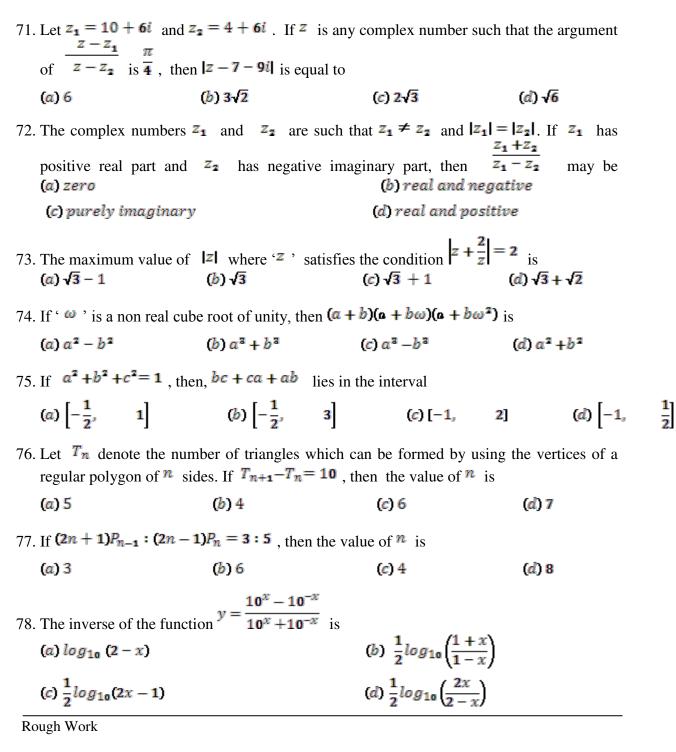
9.	E = 10 V m ⁻¹ . The electric field inside the slab volume is			
	a) 1.1 V m ⁻¹	b) 30 V m ⁻¹	c) zero	d) 3.33V m ⁻¹
10.	A parallel plate capacitor such that it accumulates the plates is increased a) both electric field inside	charge Q. While bein	g connected, if the se	e e
	b) electric field inside thec) electric field inside thed) both electric field inside	e capacitor decreases a e capacitor increases ar	and Q increases ad Q decreases	
11.	The sides (in meters) $\mathbf{a} = 4\mathbf{i}$, $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j}$ and $\mathbf{c} = \mathbf{i}$			sented by vectors
	a) 20 m ²	b) 26 m ²	c) 36 m^2	d) 40 m^2
12.	The slant side of a frict Starting from rest the time is			
	a) 0.63 s	b) 0.23 s	c) 0.2 s	d) 0.4 s
13.	A mass of 0.01 kg is hu spring constants k_1 = 10 system is			
	a) 3 cm	b) 1.5 cm	c) 6 cm	d) 2.5 cm
14.	A mass $m = 1$ kg located in the y direction. All nur		•	
	a) 0.24 radians s ⁻² along a c) 0.12 radians s ⁻² along a		b) 0.18 radians s ⁻² alo d) 0.32 radians s ⁻² alo	
15.	A circuit is operated by flowing in the circuit is (internal resistance is			
	a) 1.8 W	b) 1.74 W	c) 1.42 W	d) 1.62 W
16.	A small magnet of magn net magnetic flux emergi	<u> </u>	eed inside a hollow sph	nere of radius R; the
	a) proportional to mb) proportional to the proc) zero	duct R ² and magnitud	le of m	
	d) a function of location	and orientation of the r	magnet	
Roi	ıgh Work			

1/.	vector is $B = 2i + 4j + 6k$			magnetic muuction
	a) 2	b) 4	c) 6	d) √56
18.	The direction of a ray of corresponding wave from		wave is along unit ve	ctor $n = i + j$. The
	a) parallel to z axis		b) parallel to <i>n</i>	
	c) perpendicular to z axis		d) parallel to y-z plan	ne
19.	Electric potential in a reg field magnitude at a point		. All numbers are in S	I units. The Electric
	a) 40	b) 20	c) 80	d) 10
20.	When a glass prism of re deviation is 30°. The critia) 45°		<u>=</u>	_
21.	Choose the group of inco (i) The ammeter used to (ii) An ammeter should h (iii) An ammeter should h (iv) Connecting ammete before.	measure current in a c nave very low resistant nave very high resistan	ircuit is to be connected. ce.	
	a) (i) and (ii)	b) (ii) and (iii)	c) (iii) and (iv)	d) (iv) and (i)
22.	Let E_i , $N_{i,}$, I_i with $i=1,2$ of the primary and secondar	- ·		, and the current in
	a) $E_1/E_2 = N_1/N_2 = I_1/I_2$		b) $E_1/E_2 = N_2/N_1 = I_1/N_2$	I_2
	c) $E_2/E_1 = N_1/N_2 = I_1/I_2$		d) $E_1/E_2 = N_1/N_2 = I_2/N_2$	I_{1}
23.	Which of the following a a) Fermat's principle and b) Huygen's principle and c) Law of gravitation and d) Alpha decay and Could	l propagation of light d speed of light l Kepler's laws		
24.	A tiny electric dipole of c two far away point (b,0,0		laced at the origin. The	e electric fields at
	a)b) equalc) equal in direction onlyd) unequal in magnitude		equal in magnitude	
Rour	gh Work	**		
Kouş	311 VV OIK			

25.	A compound telescope ha Which statement is correct a) Both A and B form rea b) Both A and B form vir c) A forms real image and d) A forms virtual image	ct? Il images. tual images. d B forms virtual imag	re.	bject than lens B.
26.	Assume that the wave le 600 nm. Its frequency is	ength of yellow light	in crown glass of ref	ractive index 1.5 is
	a) $0.5 \times 10^{15} \text{ Hz}$	b) $0.33 \times 10^{15} \text{ Hz}$	c) $1.5 \times 10^{15} \text{ Hz}$	d) $0.5 \times 10^{15} \text{ Hz}$
27.	The energies of two ph momenta is		-	
	a) 1:2	b) 1:4	c) 2:1	d) 4:1
28.	At a given kinetic energy	which of the followin	g has the highest speed	1?
	a) neutrino	b) electron	c) muon	d) photon
29.	The time taken by light to order of	o travel over a length	equal to the radius of n	ucleus ⁶⁴ Ni is of the
	a) 10^{-21} s	b) 10^{-23} s	c) 10^{-25} s	d) 10 ⁻¹⁹ s
30.	 Water in a porcelain comof the water rises, but the a) porcelain is a bad cond b) water is a liquid and canductor. c) preferential absorption d) microwaves are more 	container temperature ductor of heat. an set up convection con of microwaves of cer	does not rise much. Turrents but the containe tain frequencies by war	his is because er is solid non
				IN COMPLETE
Rou	ıgh Work			

CHEMISTRY (S.No. 36 to 70) 35 Questions

36.	20 g of a solute whose d upto one litre. If the mosolution?			
	a) 0.2020	b) 0.4040	c) 0.2000	d) 0.0200
37.	The velocity of infra red a) twice	radiation in vacuum co b) half	ompared to ultra violet c) equal	is d) four times
38.	Which one of the following a) An orbit and orbital material b) An orbit and orbital control of the energies of the ordinary of the maximum number of the orbits.	ean the same thing. ontain the same numbe bit and the orbital are t	he same.	al will be different.
39.	Which one of the followinciple? a) calcium	lowing has electronic b) titanium	c) chromium	iolation of Aufbau d) manganese
40.	Which one of the following a) A matchstick on strike b) Camphor packed in a cc) Petrol kept in an open d) Water in a beaker surr	e burns. container without over beaker reduces in qua	space catches fire on intity slowly.	ts own.
41.	at the same temperature i	5°C. The value of th	stant is 5×10^{-5} and the equilibrium constant	second dissociation at for the following $\frac{1}{2}$ d) 5×10^{-14}
42.	In ice-liquid water equilible a) increase in melting poc) no change in melting p	int of ice	b) decrease in melting d) disappearance of o	_
43.	A silver rod dipped in a potential of 0.75 V vs st 0.8 V, at what molar conc a) 2.76×10^{-14}	andard hydrogen elect	rode. If the standard p	otential for silver is
Ro	ough Work	·	·	· ·


44.	What is the theoretical quantity of hydrogen required to generate 53.6Ah in a Proton Exchange Membrane Fuel Cell?			
	a) 1.0 g	b) 1.0 kg	c) 2.0 g	d) 2.0 litre
45.	reaction increases by for	s doubled keeping tur times. What is th	hat of Y and Z constant.	
	a) 2	b) 4	c) 1	d) 0
46.	Which one of the follow	ring exhibits Schott	ky defect?	
	a) nickel oxidec) ferrous sulphide		b) potassium bromid) silver chloride	de
47.	Which one of the follow	ving is anti ferromaș	gnetic?	
	a) titanium dioxidec) oxygen		b) nickeld) ferrous oxide	
48.	The gas that is produced	l through catalytic r	reforming of sewage is	
	a) producer gas		b) syngas	
	c) natural gas		d) carbon monoxide	2
49.	Which one of the follow	ing hydrides is non	a-stoichiometric?	
	a) ammonia	b) nickel hydride	c) sodium hydride	d) diborane
50.	The order of energy release a) LPG > octane > liquid hydrogen > gac) octane > LPG > liquid d) gaseous hydrogen >	uid hydrogen > ga aseous hydrogen > uid hydrogen > ga	LPG > octane aseous hydrogen	er litre is
51.	Density of the following	g alkali metals is in	the order of	
	a) lithium < sodium	_		
	b) rubidium < potassi c) sodium < potassi		< lithium < rubidium	
	, <u> </u>	um < sodium	< rubidium	
52.	The discontinuity in ion is due to a) irregular variation in b) irregular variation in	ization enthalpy valionic radii electronegativity	lues of group 13 elements	s in the periodic table
	c) poor shielding effect d) poor shielding effect			

53.	The reduction of g	germanium tetrachloride with	lithium aluminium hyd	ride gives
	a) digermanec) monogermane		b) di and tri germanesd) mixture of all germ	
54.	Which one of the a) liquid sulphur do c) poly ethylene o		n lithium primary batte b) thionyl chloride d) methyl cyanide	ery?
55.	What type of isom a) linkage	nerism is possible in pentaamn b) optical	ninenitrocobalt(II)chlo c) position	ride? d) ionisation
56.	A coordination co is the type of hybra) dsp ²	mpound has trigonal bipyrami ridisation present? b) sp ³	idal distribution of hyb	rid orbitals. What $d d^2 sp^3$
57.	0.3 g of an organ pressure and 27°	nic compound gave 60 mL of PC. Aqueous tension at 27° trogen in the compound? b) 2.125	nitrogen collected over	er water at 730 mm
58.	distillation in pres a) acetic anhydrid	ucts formed on passing ace ence of mercuric sulphate. e and acetone dride and methanol	tylene through acetic b) acetic anhydride ar d) acetic anhydride ar	nd ethanol
59.	a) alkyl fluorideb) alkyl fluoridec) alkyl iodide	ivity of the following for an S > alkyl chloride > alkyl be > alkyl bromide > alkyl cl > alkyl bromide > alkyl cl > alkyl fluoride > alkyl ice	romide > alkyl iodi nloride > alkyl iodi nloride > alkyl fluo	de ride
60.	acid at 170°C to	<u> </u>	is, followed by hydro	olysis with lithium set of products from

IN COMPLETE

MATHEMATICS (S.No. 71 to 120) 50 Questions

				7			
79. The sum of the first n	terms of the series	- +	4+	8+	16+ ···	*** *** ***	is

(a)
$$2^n - 1$$

(c)
$$2^{-n} - n + 1$$

(d)
$$2^{-n} + n - 1$$

80. If
$$5^{1+x} + 5^{1-x}$$
, $\frac{\alpha}{2}$ and $25^x + 25^{-x}$ are three consecutive terms of an A.P., then the values of ' α ' are given by

(a)
$$a \ge 12$$

(b)
$$a > 12$$

(c)
$$\alpha < 12$$

(d)
$$\alpha \leq 12$$

81. If
$$a_a$$
 b_a c are in H.P., then the value of $\frac{b+a}{b-a} + \frac{b+c}{b-c}$ is

$$(\alpha)$$
 0

$$(d)$$
 3

82. Let
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = \mathbf{\Lambda}$$
, where a_s b_s c are positive. Then

$$(a) \Delta > 0$$

$$(d) \Delta < 0$$

83. If
$$\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 6 & 7 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -2 \end{bmatrix} = 0$$
, then the value of x is

$$(\alpha)-\frac{1}{2}$$

$$(b)^{\frac{1}{2}}$$

$$(c)^{\frac{12}{5}}$$

$$(d) - \frac{12}{5}$$

84. The quadratic expression
$$17 + 12x - 4x^2$$
 takes

(a) the least value 6

(b) the highest value 26

(c) the highest value 17

- (d) the lowest value 17
- 85. Three vectors \overline{A}_s \overline{B} and \overline{C} are given by $\hat{\imath} + \hat{k}_s$ $\hat{\imath} + \hat{\jmath} + \hat{k}$ and $3\hat{\imath} 2\hat{\jmath} + 5\hat{k}$ respectively. Then the vector \overline{R} which satisfies the relation $\overline{R} \times \overline{B} = \overline{C} \times \overline{B}$ and $\overline{R} \cdot \overline{A} = \mathbf{0}$ is

(a)
$$-\hat{\imath} - 6\hat{\jmath} + \hat{k}$$

(b)
$$\hat{i} + 6\hat{j} - \hat{k}$$

(c)
$$2\hat{i} - 3\hat{j} + \hat{k}$$

(d)
$$-\hat{\imath} + 6\hat{\jmath} - \hat{k}$$

acting

86. If the magnitude of moment about the point $\hat{j} + \hat{k}$ of a force $\hat{i} + \alpha \hat{j} - \hat{k}$

through the point $\hat{i}+\hat{j}$ is $\sqrt{18}$, then the value of α is

	(a) 9	(b) 4	(c) ± 2	$(d)\pm 3$	
87	. The arithmetic mean of **	odd natural numbers is	S		
	(a) n	(b) $\frac{n(n+1)}{2}$	(c) $n-1$	(d) n^2	
88	. A car completes the first he velocity **2 . The average v		•	remaining half with	
	(a) $\sqrt{v_1v_2}$	(b) $\frac{v_1 - v_2}{2}$	(c) $\frac{v_1 + v_2}{2}$	(d) $\frac{2v_1v_2}{v_1 + v_2}$	
89	An integer x is chosen $x + \frac{192}{x} \le 30$ is	at random from the nu	mbers 1 to 28 . 7	Γhe probability that	
	(a) $\frac{7}{10}$	(b) $\frac{1}{15}$	(c) $\frac{2}{28}$	(d) $\frac{5}{28}$	
90	90. Let ** be a nonzero real number. A determinant is chosen from the set of all determinants of order two with entries ** and ** only. The probability that the value of the determinant is nonzero is				
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{3}{16}$	(d) $\frac{1}{8}$	
91	Two candidates <i>A</i> and probability that <i>A</i> is select atmost 0.25 . Then the pro	ted is 0.5 and the proba	bility that both A a	and B are selected is	
	(a) 0.75	(b) 0.7	(c) 0.8	(d) 0.6	
92	. The curve satisfying the dithe point (1, -1) is	ifferential equation $\frac{dy}{dx}$	$= \frac{y^2 - 2xy - x^2}{y^2 + 2xy - x^2}$ and	nd passing through	
	(a) a circle		(b) a straight lin	te	
	(c) an ellipse		(d) a parabola		
Ro	ough Work				

93. The solution of the differential equation $\frac{\log dy}{dx} = 9x - 6y + 6$, given y = 1 when x = 0 is

(a)
$$3e^{6y} = 2e^{9x-6} + 6e^x$$

(b)
$$3e^{6y} = 2e^{9x+6} - 6e^6$$

(c)
$$3e^{6y} = 2e^{9x+6} + e^6$$

(d)
$$e^{6y} = 2e^{9x-6} + e^{-6}$$

$$94. \sqrt{2 + \sqrt{2 + 2\cos 8\theta}}$$
 is ea

is equal to

- (a) $2\cos 4\theta$
- (b) $2\cos 2\theta$
- (c) $2\cos\theta$
- (d) $\cos 2\theta$

95. The value of $\lim_{|x|\to\infty} [\cos(\tan^{-1})] (\sin(\tan^{-1}x))$ is equal to

 $(\alpha)-1$

- (b) $\sqrt{2}$
- (c) $-\frac{1}{\sqrt{2}}$

96. If the orthocentre H of a triangle ABC bisects the altitude AD of the triangle ABC, then the value of tanBtanC is

(a) 1

(b)2

(c)3

(d)4

97. The remainder got by dividing 2804 by 257 is

- (a) 16
- **(b)** 15
- (c) 17
- (d) 14

98. If $\lim_{x\to 0} f(x) = \frac{1}{2}$ and $\lim_{x\to 0} g(x) = 4$, then $\lim_{x\to 0} \frac{f(x)\cos x}{e^x \sqrt{g(x)}}$ is

- (a)0
- (b) 1
- (c)1
- (d) 2

99. If f(x) and g(x) are two functions such that f(2) = 3, g(2) = -4, $f'(2) = -\frac{1}{2}$ and $g'(2) = -\frac{8}{3}$, then the derivative of $log_s[f(x)g(x) + x]$ at x = 2 is

- (b) $\frac{1}{2}$ (c) $-\frac{1}{2}$ (d) $-\frac{1}{2}$

If $\mathbb{P}(x)$ is a 100.

polynomial of degree three which attains its maximum value 60 at x = -3 and minimum value -84 at x = 3, then the polynomial is

(a) $\frac{x^3}{3} - 9x - 12$

(b) $x^2 - 9x - 12$

(c) $4\left(\frac{x^3}{3} - 9x\right) - 12$

(d) $4\left(\frac{x^3}{3} - 9x\right) + 12$

101. Part of the domain of the function $f(x) = \sqrt{100}$	$cosx - \frac{1}{2}$	
101. Part of the domain of the function [-1] 6] is	$6 + 35x - 6x^2$	lying in the interval

(a)
$$\left[-\frac{1}{6}, \frac{\pi}{3}\right] \cup \left[\frac{5\pi}{3}, 6\right]$$

$$(b)\left(-\frac{1}{6},\frac{\pi}{3}\right) \cup \left(\frac{5\pi}{3}, 6\right)$$

(c)
$$\left(-\frac{1}{6}, 6\right)$$

$$(d)\left(-\frac{1}{6}, -6\right)$$

If the matrix $\begin{bmatrix} \mathbf{0} & \mathbf{2}\beta & \mathbf{\gamma} \\ \alpha & \beta & -\mathbf{\gamma} \\ \alpha & -\beta & \mathbf{\gamma} \end{bmatrix}$ is orthogonal, then

(a)
$$\alpha = \pm \frac{1}{\sqrt{2}}$$

(b)
$$\beta = \pm \frac{1}{\sqrt{6}}$$

(c)
$$\gamma = \pm \frac{1}{\sqrt{3}}$$

Let $\frac{a_3}{a^2} + \frac{b_3}{b^2} + \frac{c}{c^2} = 1$ be positive real numbers. The following system of equations $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 2$ and $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 3$ has 103.

(a) unique solution

(b) no solution

(c) infinitely many solutions

(d) repeated solutions

104. If the quadratic equation $ax^2 + 2cx + b = 0$ and $ax^2 + 2bx + c = 0$, $(b \neq c)$ have a common root, then a + 4b + 4c is equal to

 (α) 0

(b) 1

(c) - 1

(d) - 2

105. A helicopter is to fly directly from a helipad at the origin in the direction of the point

1) at a speed of $\frac{ft}{\sec \Box}$. The position of the helicopter after 15 sec □ is

(a) $(20\sqrt{3},$

 $20\sqrt{3}$

 $20\sqrt{3}$)

(b) $(60\sqrt{3}, 60\sqrt{3},$

 $60\sqrt{3}$)

 $300\sqrt{3}$)

(c) (300,

300, 300) (d) $(300\sqrt{3},$

 $300\sqrt{3}$

106. Let X be the number of times heads occur in X tosses of a fair coin. If P(X = 4), P(X = 5) and P(X = 6) are in A.P., then the least value of ⁿ is

(a) 10

(b) 14

(c) 7

(d) 5

The solution of the differential equation

$$\int_{n} \frac{dy}{dx} = \frac{y\varphi(\square'(x) - y^{2})}{\varphi(x)}$$
 is

(a)
$$y = \frac{\varphi(x) + C}{x}$$

(b)
$$y = \frac{\varphi(x)}{x + C}$$

(c)
$$y = \varphi(x) + x + C$$

(d)
$$y = \frac{\varphi(x)}{x} + C$$

108. The solution of the differential equation
$$\frac{dy}{dx} = \sin(x + y) + \cos(x + y)$$
 is

(a)
$$\log \left| 1 - \tan \left(\frac{x + y}{2} \right) \right| = y + C$$

(b)
$$\log \left| 1 + \tan \left(\frac{x+y}{2} \right) \right| = x + C$$

(c)
$$\log \left| 1 + \tan \left(\frac{x + y}{2} \right) \right| = y + C$$

(d)
$$log|1 + tan(x + y)| = x + C$$

109. The equation $sin^4x + cos^4x + sin2x + \beta = 0$ is solvable for

$$(\alpha) - \frac{5}{2} \le \beta \le \frac{1}{2}$$

(b)
$$-3 \le \beta < 1$$

$$(c) -\frac{3}{2} \le \beta \le \frac{1}{2}$$

(d)
$$-1 \le \beta \le 1$$

110. Given that x=x(t) and y=y(t) satisfy the equations $x+2x^{\frac{3}{2}}=t^2+t$ and $y\sqrt{1+t}+2t\sqrt{y}=4$, then dy = dy at t=0 is

$$(a) - 6$$

$$(b) - 4$$

111. Two ships are steaming away from a point **O ' along routes that make an angle of 120°. Ship A moves at 14 knots and ship B at 21 knots. The ships are moving apart at a rate of $\Box'a \ knots'$ when OA = 5 nautical miles and OB = 3 nautical miles, where is

- (a)29.5
- (b) 28.5
- (c)29
- (d)28

112. If $U_n = \int_0^1 x^n t a n^{-1} x dx$, then the value of $(n+1)U_n + (n-1)U_{n-2}$ is

- $(a)\frac{\pi}{4} \frac{1}{n}$ $(b)\frac{\pi}{4} + \frac{1}{n}$ $(c)\frac{\pi}{2} \frac{1}{n}$ $(d)\frac{\pi}{2} + \frac{1}{n}$

113. The value of
$$\int_1^5 2^{\sqrt{x-1}} dx$$
 is

$$(a)\frac{16}{(\log 2)^2} - \frac{8}{\log 2}$$

$$(b)\frac{8}{\log 2} + \frac{16}{(\log 2)^2}$$

(c)
$$\frac{8}{log2} - \frac{4}{(log2)^2}$$

(d)
$$\frac{16}{\log 2} - \frac{8}{(\log 2)^2}$$

114. The pair of tangents drawn from the point P = (h, k) to the two circles $x^2 + y^2 + 2x = 0$ and $x^2 + y^2 - 6x = 0$ coincide. Then the point P is

2)

0)

(d) (3,-2)

115. Two circles pass through $(0, \pm a)$ and touch the straight line x - 2y - 4 = 0. If the two circles are orthogonal, then the value of a is

$$(\alpha)\frac{3}{4}$$

 $(b)^{\frac{\sqrt{3}}{4}}$

(c) $\frac{4}{3}$

(d) $\frac{3}{2}$

0)

116. A force $\overline{F} = 3\hat{\imath} + \hat{\jmath} - 2\hat{k}$ is applied to a spacecraft with velocity $\overline{v} = \hat{\imath} - 2\hat{\jmath}$. Then the force F expressed as a vector which is both parallel and orthogonal to \overline{v} is

(a)
$$\frac{1}{5}(14\hat{\imath} + 7\hat{\jmath} - 2\hat{k})$$

(b)
$$\frac{1}{5}(14\hat{\imath}-7\hat{\jmath}-2\hat{k})+\frac{\hat{\imath}-2\hat{\jmath}}{\sqrt{5}}$$

$$(c)\frac{14\hat{i}}{5} + \frac{7\hat{j}}{5} - 2\hat{k} + \frac{\hat{i} - 2\hat{j}}{5}$$

(d)
$$\frac{1}{5}(14\hat{\imath} + 7\hat{\jmath} - 2\hat{k}) + \hat{\imath} - 2\hat{\jmath}$$

117. If x + 4y - 14 = 0 is the normal to the curve $y^2 = px^3 + q$ at the point $\{p_a = q\}$ is

7}

(a)
$$\{2, 7\}$$

(d)
$$\{2, -7\}$$

118. $\int \frac{\log(x+1) - \log x}{x(x+1)} dx$ is

The value of the integral

8}

(a)
$$C - \frac{1}{2} \left(\log \left(1 + \frac{1}{x} \right)^2 \right)$$

(b)
$$\log\left(\frac{x+1}{x}\right) + C$$

$$(c) - \frac{1}{2} \left(\log \left(x - \frac{1}{x} \right) \right)^2 + C$$

(d)
$$2\log\left(x+\frac{1}{x}\right)+C$$

119. If $\int \frac{x^2+2}{(x^2+1)(x^2+4)} dx = p \tan \Box^{-1} \left(\frac{qx}{r+x^2}\right) + C$, then the values of p, q and r are respectively

(a)
$$\left\{\frac{1}{3}, -3, -2\right\}$$

(c) $\left\{-3, -\frac{2,1}{3}\right\}$

(b)
$$\left\{-\frac{1}{3}, 3, 2\right\}$$

(d) $\left\{\frac{1}{3}, 3, 2\right\}$

120. The area enclosed between the two parabolas $y = 7 - 2x^2$ and $y = x^2 + 4$ is

- (a)3
- **(b)** 4
- (c) 2
- (d) 5

(Continued from the first page)

OMR ANSWER SHEET

- 1. Use the OMR answer sheet carefully; no spare sheet will be issued under any circumstance.
- 2. Do not fold or make any stray mark on the OMR sheet.
- 3. Use HB Pencil or Blue / Black ball point pen for shading the bubbles and black ball pen for writing.
- 4. In the OMR answer sheet, make the following entries
 - a. Write the Registration number, Question Booklet Number and Question Booklet Version code.
 - b. Fill the ovals corresponding to the Registration Number, Question Booklet Number and Question Booklet Version Code.
 - c. Write your Name and Signature.
- 5. Rough work should not be done on the answer sheet.

ANSWERING AND EVALUATION

- 6. For each question, four answers are suggested of which only one is correct / most appropriate. Mark the correct / most appropriate answer by darkening the corresponding bubble using HB pencil or Blue / Black ball point pen.
- 7. In case the candidate wishes to change the choice already shaded using HB pencil, he/she may erase the marking completely and thereafter shade the alternative bubble.
- 8. If more than one bubble is darkened against a question, it will be treated as an incorrect answer.
- 9. For each correct answer, three marks will be awarded.
- 10. For each incorrect answer, one mark will be deducted from the total score.
- 11. If any smudge is left on the OMR sheet, evaluation will become imperfect.