

click to campus

AEEE 2009 Question Paper PDF

Amrita Engineering Entrance Examination (AEEE)

Download more AEEE Previous Year Question Papers: Click Here

AMRITA VISHWA VIDYAPEETHAM

(University established u/s 3 of UGC Act 1956)

Amrita Entrance Examination – Engineering 2009

PHYSICS, CHEMISTRY & MATHEMATICS								
Question booklet version code	В	Question booklet no:	208209	Time : 3 hrs				
Number of pages	20	Number of questions	120	Max. Marks : 360				
Registration number	r							
Name								
Signature								

INSTRUCTIONS TO THE CANDIDATES

GENERAL

- 1. Any malpractice or attempt to commit malpractice in the examination hall will lead to disqualification of the candidate.
- 2. Candidates are not allowed to carry any textual material, printed or written bits of paper, Mathematical and Physical Tables, electronic gadgets like calculator, cell phone etc. into the examination hall.
- 3. Candidates shall possess the University Hall Ticket which should be produced on demand.
- 4. Candidates shall occupy the respective seats bearing their registration numbers on time.
- 5. Candidates are not permitted to leave the hall before the end of the examination.
- 6. Candidates are required to handover the ANSWER SHEET and the QUESTION BOOKLET to the invigilator before leaving the hall.

QUESTION BOOKLET

- 7. DO NOT OPEN THE SEALED QUESTION BOOKLET UNTIL THE INVIGILATOR ANNOUNCES TO DO SO.
- 8. Before opening the Question Booklet, write the Registration Number, Name and Signature using ball pen in the space provided at the top of this page.
- 9. Immediately after opening the booklet, the candidate should examine whether it contains all the 120 questions in serial order and 20 pages as mentioned at the top of this page. In case of unprinted, torn or missing pages in the booklet, the matter should be reported to the invigilator immediately.

1

10. Rough work may be done on the space provided in this booklet.

(Continued on the last page of this question booklet)

AEE2009B

PHYSICS

Ch	celeration due to gravi	10 ⁻¹⁹ C. Velocity of l	electron = 0.511MeV/c ight in vacuum, c= 3 x 0 ⁻⁵ eV K ⁻¹	10 ⁸ m/s			
1.	An electric dipole is p a) a force but no torque c) a force and a torque	ue	m electric field. It experiences b) no force, no torque d) no force but a torque				
2.	 2. A battery of emf 10 V is connected across a 1 Ω resistor. The voltage across the 1Ω resistor is 5V. The internal resistance of the battery is a) 2 Ω b) 0.5 Ω c) 1 Ω d) 4 Ω 						
3.	Which unit is appropriate N C ⁻¹	riate for specifying ma b) N C ⁻¹ m ⁻¹ s	gnetic induction? c) J C ⁻¹ m ⁻¹ s	d) A m ²			
4.	 4. Four masses of 1 kg each are placed at four corners of a square of side 2m placed symmetrically in xy plane. The square is set in rotation around z-axis with angular velocity ω = 2 rad s⁻¹. The angular momentum of this system in motion in SI units is a) 32 b) 16 c) 8 d) 64 						
5.	At what distance from	om the point of equil	librium, the kinetic er llator of amplitude A?	,			
6.	 6. If the tension along a stretched string is doubled, the speed of sound along it will a) increase by a factor 2 b) increase by a factor 4 c) increase by a factor √2 d) remain unchanged 						
7.	The kinetic energy of order of a) 10eV	f an atom in helium ga b)10 ⁻³ eV	as held at temperature c)10 ⁻⁶ eV	-200° C is of the d) 10 ⁻⁵ eV			
8.	The resistivity of colong and having circual $50 \text{ K}\Omega$	pper is 0.01Ω m ⁻¹ . While the cross section area b) 5 K Ω	That is the resistance of 0.1 mm^2 c) $10 \text{ K } \Omega$	of a wire 50 cm			

Rough work

acquired is

a) 6.4 eV

9. An alpha particle is accelerated by a potential difference of 4 volt. The energy

c) 8 eV

b) 4 eV

d) 3.2 eV

a) $\frac{1}{5\pi}$ b) $\frac{2}{50\pi}$ c) $\frac{1}{25\pi}$ d) $\frac{1}{\sqrt{50\pi}}$ 11. Twenty seven mercury drops of equal radii and having equal charges are combined to form a big drop. The ratio of the capacitance of the bigger drop to each individual drop is a) 9:1 b)1:9 c) 3:1 d) 1:3 12. In its ground state, the At¹ ion has a) 6 electrons in 1p state c) 4 electrons in 1p state d) one electron in 3s state 13. Positions of two masses m=1 and M=4 are given by the vectors r₁= 3 i -4 j and r₂= -7i- 4j .All numbers are in SI units. Distance of their center of mass from M is a) 1 b) 2 c) 4 d) 5 14. A mass m is undergoing uniform circular motion in xy plane with constant speed 40 ms¹ around the origin. At t=0 its position coordinate is (6,8). What is the time period? a) π s b)2π s c) π/2 s d) 20π/7 s 15. At t=0, a projectile of mass 1 kg is projected with speed 10 ms¹ and making an angle 30° with the horizontal. The x-component of its velocity at t=1 s is a) 8.66 ms¹ b) 5 ms¹ c) 10 ms¹ d) 7.07 ms¹¹ 16. The sides and mass of a solid cube of uniform density are measured each with accuracy ± 1%. The accuracy of its density D calculated using this data and using the formula D=M/L³ is approximately a) ± 1% b) ± 2% c) ± 3% d) ± 4% 17. Assume the earth to be a sphere of constant density and radius R. What is the acceleration due to gravity at a distance R/4 from the center of the earth? a) 10 ms² b) 4 ms² c) 2.5 ms² d) 5 ms² 18. A unit charge is placed at point (0,3) in xy plane. The direction of electric field at the point (4,0) is along a) unit vector (i - j)/√2 c) unit vector (4i-3j)/5 d) unit vector (-4i+3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a a) straight line b) circle c) ellipse d) helix	10	10. A straight infinitely long thin wire along the z axis carries current 2 A. At a point (3,4,5) the magnitude of magnetic field intensity(H) in SI units is						
combined to form a big drop. The ratio of the capacitance of the bigger drop to each individual drop is a) 9:1 b)1:9 c) 3:1 d) 1:3 12. In its ground state, the Ar ⁺ ion has a) 6 electrons in 1p state c) 4 electrons in 3d state d) one electron in 3s state 13. Positions of two masses m=1 and M=4 are given by the vectors r ₁ = 3 i -4 j and r ₂ = -7i-4j. All numbers are in SI units. Distance of their center of mass from M is a) 1 b) 2 c) 4 d) 5 14. A mass m is undergoing uniform circular motion in xy plane with constant speed 40 ms ⁻¹ around the origin. At t=0 its position coordinate is (6,8). What is the time period? a) π s b)2π s c) π/2 s d) 20π/7 s 15. At t=0, a projectile of mass 1 kg is projected with speed 10 ms ⁻¹ and making an angle 30° with the horizontal. The x-component of its velocity at t=1 s is a) 8.66 ms ⁻¹ b) 5 ms ⁻¹ c) 10 ms ⁻¹ d) 7.07 ms ⁻¹ 16. The sides and mass of a solid cube of uniform density are measured each with accuracy ± 1%. The accuracy of its density D calculated using this data and using the formula D=M/L ³ is approximately a) ± 1% b) ± 2% c) ± 3% d) ± 4% 17. Assume the earth to be a sphere of constant density and radius R. What is the acceleration due to gravity at a distance R/4 from the center of the earth? a) 10 ms ⁻² b) 4 ms ⁻² c) 2.5 ms ⁻² d) 5 ms ⁻² 18. A unit charge is placed at point (0,3) in xy plane. The direction of electric field at the point (4,0) is along a) unit vector (4i-3j)/5 d) unit vector (-4i+3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a		a) $\frac{1}{5\pi}$	b) $\frac{2}{50\pi}$	c) $\frac{1}{25\pi}$	d) $\frac{1}{\sqrt{50\pi}}$			
 12. In its ground state, the Ar⁺ ion has a) 6 electrons in 1p state c) 4 electrons in 3d state d) one electron in 3s state 13. Positions of two masses m=1 and M=4 are given by the vectors r₁= 3 i -4 j and r₂= -7i- 4j. All numbers are in SI units. Distance of their center of mass from M is a) 1 b) 2 c) 4 d) 5 14. A mass m is undergoing uniform circular motion in xy plane with constant speed 40 ms⁻¹ around the origin. At t=0 its position coordinate is (6,8). What is the time period? a) π s b) 2π s c) π/2 s d) 20π/7 s 15. At t=0, a projectile of mass 1 kg is projected with speed 10 ms⁻¹ and making an angle 30° with the horizontal. The x-component of its velocity at t=1 s is a) 8.66 ms⁻¹ b) 5 ms⁻¹ c) 10 ms⁻¹ d) 7.07 ms⁻¹ 16. The sides and mass of a solid cube of uniform density are measured each with accuracy ± 1%. The accuracy of its density D calculated using this data and using the formula D=M/L³ is approximately a) ± 1% b) ± 2% c) ± 3% d) ± 4% 17. Assume the earth to be a sphere of constant density and radius R. What is the acceleration due to gravity at a distance R/4 from the center of the earth? a) 10 ms⁻² b) 4 ms⁻² c) 2.5 ms⁻² d) 5 ms⁻² 18. A unit charge is placed at point (0,3) in xy plane. The direction of electric field at the point (4,0) is along a) unit vector i b) unit vector (-4i + 3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a 	11.	combined to form a	big drop. The ratio o					
a) 6 electrons in 1p state c) 4 electrons in 3d state d) one electron in 3s state 13. Positions of two masses m=1 and M=4 are given by the vectors r₁= 3 i -4 j and r₂= -7i- 4j .All numbers are in SI units. Distance of their center of mass from M is a) 1 b) 2 c) 4 d) 5 14. A mass m is undergoing uniform circular motion in xy plane with constant speed 40 ms⁻¹ around the origin. At t=0 its position coordinate is (6,8). What is the time period? a) π s b) 2π s c) π/2 s d) 20π/7 s 15. At t=0, a projectile of mass 1 kg is projected with speed 10 ms⁻¹ and making an angle 30° with the horizontal. The x-component of its velocity at t=1 s is a) 8.66 ms⁻¹ b) 5 ms⁻¹ c) 10 ms⁻¹ d) 7.07 ms⁻¹ 16. The sides and mass of a solid cube of uniform density are measured each with accuracy ± 1%. The accuracy of its density D calculated using this data and using the formula D=M/L³ is approximately a) ± 1% b) ± 2% c) ± 3% d) ± 4% 17. Assume the earth to be a sphere of constant density and radius R. What is the acceleration due to gravity at a distance R/4 from the center of the earth? a) 10 ms⁻² b) 4 ms⁻² c) 2.5 ms⁻² d) 5 ms⁻² 18. A unit charge is placed at point (0,3) in xy plane. The direction of electric field at the point (4,0) is along a) unit vector i b) unit vector (i - j)/√2 c) unit vector (4i - 3j)/5 d) unit vector (-4i + 3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a		a) 9:1	b)1:9	c) 3:1	d) 1:3			
 r₂= -7i- 4j. All numbers are in SI units. Distance of their center of mass from M is a) 1 b) 2 c) 4 d) 5 14. A mass m is undergoing uniform circular motion in xy plane with constant speed 40 ms ⁻¹ around the origin. At t=0 its position coordinate is (6,8). What is the time period? a) π s b) 2π s c) π/2 s d) 20π/7 s 15. At t=0, a projectile of mass 1 kg is projected with speed 10 ms ⁻¹ and making an angle 30° with the horizontal. The x-component of its velocity at t=1 s is a) 8.66 ms ⁻¹ b) 5 ms ⁻¹ c) 10 ms ⁻¹ d) 7.07 ms ⁻¹ 16. The sides and mass of a solid cube of uniform density are measured each with accuracy ± 1%. The accuracy of its density D calculated using this data and using the formula D=M/L³ is approximately a) ± 1% b) ± 2% c) ± 3% d) ± 4% 17. Assume the earth to be a sphere of constant density and radius R. What is the acceleration due to gravity at a distance R/4 from the center of the earth? a) 10 ms ⁻² b) 4 ms ⁻² c) 2.5 ms ⁻² d) 5 ms ⁻² 18. A unit charge is placed at point (0,3) in xy plane. The direction of electric field at the point (4,0) is along a) unit vector i b) unit vector (i - j)/√2 c) unit vector (4i-3j)/5 d) unit vector (-4i+3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a 	12.	a) 6 electrons in 1p s	tate	-				
 40 ms⁻¹ around the origin. At t=0 its position coordinate is (6,8). What is the time period? a) π s b)2π s c) π/2 s d) 20π/7 s 15. At t=0, a projectile of mass 1 kg is projected with speed 10 ms⁻¹ and making an angle 30° with the horizontal. The x-component of its velocity at t=1 s is a) 8.66 ms⁻¹ b) 5 ms⁻¹ c) 10 ms⁻¹ d) 7.07 ms⁻¹ 16. The sides and mass of a solid cube of uniform density are measured each with accuracy ± 1%. The accuracy of its density D calculated using this data and using the formula D=M/L³ is approximately a) ± 1% b) ± 2% c) ± 3% d) ± 4% 17. Assume the earth to be a sphere of constant density and radius R. What is the acceleration due to gravity at a distance R/4 from the center of the earth? a) 10 ms⁻² b) 4 ms⁻² c) 2.5 ms⁻² d) 5 ms⁻² 18. A unit charge is placed at point (0,3) in xy plane. The direction of electric field at the point (4,0) is along a) unit vector i b) unit vector (i - j)/√2 c) unit vector (4i-3j)/5 d) unit vector (-4i+3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a 	13.	r_2 = -7i- 4j .All numb	ers are in SI units. Dis	tance of their center of	mass from M is			
 15. At t=0, a projectile of mass 1 kg is projected with speed 10 ms⁻¹ and making an angle 30° with the horizontal. The x-component of its velocity at t=1 s is a) 8.66 ms⁻¹ b) 5 ms⁻¹ c) 10 ms⁻¹ d) 7.07 ms⁻¹ 16. The sides and mass of a solid cube of uniform density are measured each with accuracy ± 1%. The accuracy of its density D calculated using this data and using the formula D=M/L³ is approximately a) ± 1% b) ± 2% c) ± 3% d) ± 4% 17. Assume the earth to be a sphere of constant density and radius R. What is the acceleration due to gravity at a distance R/4 from the center of the earth? a) 10 ms⁻² b) 4 ms⁻² c) 2.5 ms⁻² d) 5 ms⁻² 18. A unit charge is placed at point (0,3) in xy plane. The direction of electric field at the point (4,0) is along a) unit vector i b) unit vector (i - j)/√2 c) unit vector (4i-3j)/5 d) unit vector (-4i+3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a 	14.	40 ms ⁻¹ around the o	oing uniform circular rorigin. At t=0 its positi	notion in xy plane wit on coordinate is (6,8).	h constant speed What is the time			
angle 30° with the horizontal. The x-component of its velocity at t=1 s is a) 8.66 ms ⁻¹ b) 5 ms ⁻¹ c) 10 ms ⁻¹ d) 7.07 ms ⁻¹ 16. The sides and mass of a solid cube of uniform density are measured each with accuracy ± 1%. The accuracy of its density D calculated using this data and using the formula D=M/L³ is approximately a) ± 1% b) ± 2% c) ± 3% d) ± 4% 17. Assume the earth to be a sphere of constant density and radius R. What is the acceleration due to gravity at a distance R/4 from the center of the earth? a) 10 ms ⁻² b) 4 ms ⁻² c) 2.5 ms ⁻² d) 5 ms ⁻² 18. A unit charge is placed at point (0,3) in xy plane. The direction of electric field at the point (4,0) is along a) unit vector i b) unit vector (i - j)/√2 c) unit vector (4i-3j)/5 d) unit vector (-4i+3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a		a) π s	b)2π s	c) $\pi/2$ s	d) 20π/7 s			
accuracy ± 1%. The accuracy of its density D calculated using this data and using the formula D=M/L³ is approximately a) ± 1% b) ± 2% c) ± 3% d) ± 4% 17. Assume the earth to be a sphere of constant density and radius R. What is the acceleration due to gravity at a distance R/4 from the center of the earth? a) 10 ms⁻² b) 4 ms⁻² c) 2.5 ms⁻² d) 5 ms⁻² 18. A unit charge is placed at point (0,3) in xy plane. The direction of electric field at the point (4,0) is along a) unit vector i b) unit vector (i - j)/√2 c) unit vector (4i-3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a	15.	angle 30° with the ho	rizontal. The x-compo	nent of its velocity at t	=1 s is			
 17. Assume the earth to be a sphere of constant density and radius R. What is the acceleration due to gravity at a distance R/4 from the center of the earth? a) 10 ms⁻² b) 4 ms⁻² c) 2.5 ms⁻² d) 5 ms⁻² 18. A unit charge is placed at point (0,3) in xy plane. The direction of electric field at the point (4,0) is along a) unit vector i b) unit vector (i - j)/√2 c) unit vector (4i-3j)/5 d) unit vector (-4i+3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a 	16.	accuracy \pm 1%. The	accuracy of its density					
 acceleration due to gravity at a distance R/4 from the center of the earth? a) 10 ms⁻² b) 4 ms⁻² c) 2.5 ms⁻² d) 5 ms⁻² 18. A unit charge is placed at point (0,3) in xy plane. The direction of electric field at the point (4,0) is along a) unit vector i b) unit vector (i - j)/√2 c) unit vector (4i-3j)/5 d) unit vector (-4i+3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a 		a) $\pm 1\%$	b) ± 2%	c) $\pm 3\%$	d) ± 4%			
the point (4,0) is along a) unit vector i b) unit vector (i - j)/√2 c) unit vector (4i-3j)/5 d) unit vector (-4i+3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a	17.	acceleration due to g	ravity at a distance R/4	from the center of the	earth?			
 c) unit vector (4i-3j)/5 d) unit vector (-4i+3j)/5 19. A charge Q is set in a field of constant magnetic induction B= B k with a velocity v = 4 i + k. Its trajectory will trace a 	18.	_	_ · · · · · · · · · · · · · · · · · · ·	plane. The direction o	f electric field at			
$\mathbf{v} = 4 \mathbf{i} + \mathbf{k}$. Its trajectory will trace a		,	5	,				
a) straight line b) circle c) ellipse d) helix	19.			netic induction B = B I	k with a velocity			
		a) straight line	b) circle	c) ellipse	d) helix			

	A proton and an alphaccelerations will be		ed by a constant electri	c field. Their
	a) 1:2	b) 1:1	c) 4:1	d) 2:1
	to the velocity of ligh	t, c. Its total energy is		
	a) mc ²	b) $p^2/2m$	c) p^2/m	d) pc
	Neutrino is a a) chargeless, fermion b) chargeless, massle c) massless, chargele d) massless fermion	ess, spinless boson ess fermion of spin 3/2		
		g a capacitor and a resi creases, the impedance		cy of the applied
	a) decreases	1	b) increases	4h -
	c) remains unchanged	1	d) first increases and	then decreases
		_	ratio 2:1 are connecte ed in them has the ratio c) 2:1	_
25.	Which of the following	ng exhibits perfect diar	nagnetism?	
	a) insulator		b) conductor	
	c) semiconductor		d) superconductor	•
	the velocity of light in		n from a medium to ai	r is 30°. What is
	a) 3 x 10 ⁸ ms ⁻¹ c) 2 x 10 ⁸ ms ⁻¹		b) 1.5 x 10 ⁸ ms ⁻¹ d) 1.732 x 10 ⁸ ms ⁻¹	
	Two interfering wave to the minimum inten		he ratio 5:1. The ratio	of the maximum
	a) 25:1	b) 4:9	c) 6:4	d) 9:4
		gth across the thickned. The thickness of the	ess of a transparent sla slab is	ab is 10 cm. Its
	a)14 cm	b) 10 cm	c) 7.14 cm	d) 19.6 cm
	(in radians) for a way	elength of 600nm?	er 10cm. What is its ar	•
	a) 3.66 x 10 ⁻⁶	b) 7.32 x 10 ⁻⁶	c) 7.32×10^{-5}	d) 7.32 x 10 ⁻⁷
	The ground state enestate energy of He ⁺ ic		is -13.6 eV. What is	the first excited
	a) -13.6 eV	b) -6.8 eV	c) -27.2 eV	d) -19.2 eV

CHEMISTRY

31.	The electronic config following is the most	uration of the elemensuitable formula for it	nt X is [Ar]4s ² 3 s oxide?	3d ¹⁰ . Which one of the			
	a) X ₂ O	b) X ₂ O ₃	c) XO	d) X ₂ O ₅			
32.	In which of the follorespectively?	owing pairs does nitr	ogen exhibit a	valency of +1 and -1			
	a) Nitrous oxide and rc) Hydroxylamine and		,	de and hydroxylamine e and hydroxylamine			
33.	Acetylene is dissolve based on	d in acetone at increa	sed pressure and	l is transported. This is			
	a) Boyle's law		b) Charles' lav				
	c) Henry's law		d) Dalton's lav	v.			
34.	200 mL of 1.0 N, 400 together. The normali) mL of 0.5 N and 400 ty of the resultant sol	0 mL of 0.25 N ution will be	of a solution are mixed			
	a) 0.5	b) 1.0	c) 0.1	d) 0.25			
35.	35. The volume of one molal solution of potassium chloride increases by 1.5% when its temperature is raised from 25 to 30°C. The molality of the solution will a) increase by 1.5% b) remain the same c) increase by 3.0% d) decrease by 1.5%						
36	The increase in bond a) $p\pi - p\pi$ bonding c) $p\pi \rightarrow d\pi$ donation	strength when fluoring	e is bonded to an b) $d\pi - d\pi$ bond) $d\pi \rightarrow p\pi$ don	nding			
37	. For a zero order react a) s ⁻¹ c) no unit	tion, the unit for the ed	quilibrium consta b) (mol/L) ⁻¹ d) mol L ⁻¹ s ⁻	s ⁻¹			
38	. Lanthanides and Acti						
	a) + 2	b) + 5	c) — 4	d) + 3			
39	The catalyst used in monoxide to carbon of		's exhaust syst	tem to oxidize carbon			
	a) homogeneous type		b) mixed type				
	c) heterogeneous type	e	d) enzyme ty	pe			
40	. The percentage of em			CC) unit cell is			
	a) 2.6	b) 26	c) 74	d) 7.4			
Re	ough work						

Rough work						
a) 44.4 mV b) 444 mV	c) 4.44 V	d) 0.0 V				
48. What is the emf of the following cell at Ni (s) Ni ⁺⁺ Ni ⁺⁺ Ni (s) 0.05M 1.6M	25°C?					
a) 1-bromo-1-phenyl ethane c) p-bromo ethyl benzene	b) 1-bromo-2-j d) o-bromo eth	· · · · · · · · · · · · · · · · · · ·				
47. Reaction of ethyl benzene with N-produces	bromosuccinimide	at room temperature				
46. m- dinitrobenzene on treatment with ama) m-diaminobenzenec) m-amino nitrosobenzene	monium sulphide g b) m-nitroanili d) benzene					
45. The correct order of crystal field splittin a) $H_2O < C_2O_4{}^{2-} < NH_3 < CN^-$ b) $NH_3 < C_2O_4{}^{2-} < H_2O < CN^-$ c) $C_2O_4{}^{2-} < H_2O < NH_3 < CN^-$ d) $N^- < NH_3 < C_2O_4{}^{2-} < H_2O$	45. The correct order of crystal field splitting energy of the following ligands is a) $H_2O < C_2O_4^{2-} < NH_3 < CN^-$ b) $NH_3 < C_2O_4^{2-} < H_2O < CN^-$ c) $C_2O_4^{2-} < H_2O < NH_3 < CN^-$					
 44. Chlorine dioxide is formed when a) Chlorate ion reacts with a reducing agent b) Chlorate ion reacts with an oxidizing agent c) Chlorate ion reacts with hypochlorite ion d) Chlorite ion reacts with chlorine 						
43. 22.4 mL of hydrogen gas combines with number of molecules of water vapour for a) 22.4 b) 6.023 x 10 ²³	rmed?	en at NTP. What is the d) 6.023×10^{17}				
42. A hydrocarbon of molecular formula which gave compounds B and C. B on gave a primary alcohol C ₃ H ₈ O. C hydrochloric acid gave a hydrocarbon reagent. What can be A? a) 2-methyl pent-2-ene c) hexene-2	reduction with lithi on reduction wit	um aluminium hydride h zinc amalgam and ot respond to Tollen's				
through brine solution in a divided cell formed in the cathode compartment? A 63.5 and 23 respectively. a) 63.0 b) 6.3	. What is the amou	ant of caustic soda in g copper and sodium are				
of copper is deposited on the cathode.	The same quantity	of electricity is passed				

49. 4.0 liters of 0.8M sulphuric a gravity 1.84 by dilution with solution? Equivalent weight (a) 10.37 b) 1.03	h water. what is the of sulphuric acid is 4	9.	acid of specific of the diluted d) 0.01037
50. 70g of ammonium chloride mixture is made up to one hydroxide is 1.8 x 10 ⁻⁵ at 25 and 35.5 respectively. Density water is 1x10 ⁻¹⁴ . What is the a) 1.056 b) 3.44	is mixed with 560 liter with water. In 5°C. Atomic weight ity of liquid ammor pH of this solution?	mL of ammonia onization constant s of nitrogen and nia is 0.8gcm ⁻³ . I	chlorine are 14
51. Polymer Dispersity Index of a) ratio between number ave b) ratio between weight ave c) ratio between number ave d) ratio between viscosity solution.	a polymer refers to erage and viscosity a erage and number av	erage molecular w	eth
 52. Antacid (gelusil) contains a) sodium hydroxide and al b) calcium hydroxide and r c) aluminium hydroxide and d) aluminium hydroxide and 	nagnesium nydroxid id magnesium hydro	ne xide	
 53. Which one of the following a) Nucleophilic aromatic s group. b) Nucleophilic aromatic s group. c) Nucleophilic aromatic s 	substitution occurs se	electively at para p	position to nitro
group. d) Nitro group is substitute 54. Ethyl fluoride is formed by type of reaction is called a) Finkelstein reaction c) Swarts reaction	heating ethyl chlorib)		uorination
55. In methyl cyanide C-H bo a) sp hybridization leads to	the formation of sh	aker than C-N bon orter and stronger	oona

b) sp³ hybridization leads to the formation of shorter and stronger bond c) sp² hybridization leads to the formation of longer and stronger bond

d) dsp² hybridization leads to the formation of shorter and weaker bond

56.	The order of reactive temperature is	vity of hydrogen hal	ides for cleavage of	ethers at high
	a) HBr > HI > HCl		b) HI > HCl > HBi	ŗ
	c) HI > HBr > HCl		d) HCl > HBr > Hl	
57.	The coordinate compo	ound iron carbonyl has	the following structur	·e.
	a) tetrahedral		b) square planar	
	c) octahedral		d) trigonal bipyramid	al
58.	mol of helium gas? Morespectively. One more	gy in MeV released in fasses of deuterium and is 1.66057x10 ⁻²⁷ kg a b) 234.4	d helium are 2.014 m _u	and 4.003 m_{u}
	a) 23.44	0) 234.4	0) 2344	u) 0.2344
59.		of the forward reaction $B \leftrightarrow C + D + 400 \text{ k}$	-	50 kJ.
	The activation energy	for the backward reac	tion for the same will	be
	a) 250 kJ	b) 400 kJ	c) 150 kJ	d) 650 kJ
60.	Concentrated sulphur	ic acid is stored and tra	ansported in	
	a) lead containers		b) PVC tanks	
	c) polypropylene com	tainers	d) mild steel tanks	

MATHEMATICS

61. If $z = (\lambda + 3) + i\sqrt{5 - \lambda^2}$, then the locus of z is

(a)
$$x^2 + y^2 = 25$$

$$(b) x^2 + y^2 = 9$$

(c)
$$x^2 + y^2 - 6x + 4 = 0$$

(d)
$$x^2 + y^2 - 6x + 25 = 0$$

62. If $\cos \theta + i \sin \theta$ is a root of the equation $a_0 x^n + a_1 x^{n-1} + \dots + a_n = 0$, then the value of $a_0 + a_1 \cos \theta + a_2 \cos 2\theta + \dots + a_n \cos n\theta$ is

(b) n

$$(c)\cos(n+1)\theta$$

(d) $\sin(n+1)\theta$

63. If $\cos A + \cos B + \cos C = 0 = \sin A + \sin B + \sin C$, then the value of cos(A-B)+cos(B-C)+cos(C-A) is

(a)
$$1/2$$

(b)-3

(d) - 3/2

64. Given that $\sin A$, $\cos A$ and $\tan A$ are in G.P., the value of $\cot^6 A - \cot^2 A$ is

$$(a) -1$$

(b) 0

(d) 2

65. If $\sin^{-1}\left(\frac{2a}{1+a^2}\right) - \cos^{-1}\left(\frac{1-b^2}{1+b^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, then 'x' is

$$(a) \frac{a+b}{1+ab} \qquad (b) \frac{a-b}{1+ab}$$

$$(c)\frac{a-b}{1-ab}$$

 $(d) \frac{a+b}{1-ab}$

66. The value of $\begin{vmatrix} x-y-z & 2x & 2x \\ 2y & y-z-x & 2y \\ 2z & 2z & z-x-y \end{vmatrix}$ is (a) xyz(x+y+z)

$$(a) xyz(x+y+z)$$

$$(c)(x+y+z)^3$$

 $(d) x^2 y^2 z^2 (x+y+z)$

67. The positive solution of the equation $\begin{vmatrix} 3-x & -6 & 3 \\ -6 & 3-x & 3 \\ 3 & 3 & -6-x \end{vmatrix} = 0 \text{ is}$

(a) 3

(b)9

(d) 6

68. If
$$A^{-1} = \begin{pmatrix} -2 & 0 & 1 \\ 9 & 2 & -3 \\ 6 & 1 & -2 \end{pmatrix}$$
, then Adj(A) is

$$(a)\begin{pmatrix} -2 & 0 & -1 \\ 9 & -2 & 3 \\ 6 & -1 & 2 \end{pmatrix}$$

$$(c) \begin{pmatrix} 2 & 0 & -1 \\ -9 & 2 & 3 \\ -6 & 1 & 2 \end{pmatrix}$$

$$(b) \begin{pmatrix} 2 & 0 & 1 \\ -9 & -2 & -3 \\ -6 & -1 & -2 \end{pmatrix}$$

$$(d) \begin{pmatrix} 2 & 0 & -1 \\ -9 & -2 & 3 \\ -6 & -1 & 2 \end{pmatrix}$$

- 69. The system of equations x + 2y z = 2; 5y 5z = 3; $2x y + \lambda z = \mu$ has infinitely many solutions if the pair $\{\lambda, \mu\}$ is
 - (a) $\{3, 1\}$
- $(b)\{1, 3\}$
- $(c)\{-3, 1\}$
- $(d) \{-1, 3\}$
- 70. It is given that x, y, z not all zero satisfy the equations x = cy + bz, y = az + cx and z = bx + ay, then $a^2 + b^2 + c^2$ is
 - (a) abc
- (b) abc 1
- (c)1-2abc
- (d) 1+2abc
- 71. In a plane, a set of 15 parallel lines intersect another set of 20 parallel lines to form parallelograms. The number of such parallelograms formed is
 - (a) 19850
- (b) 19750
- (c) 19000
- (d) 19950
- 72. If $|\overline{a}| = 5$, $|\overline{b}| = 7$ and $|\overline{a} \overline{b}| = 12$, then $|\overline{a} + \overline{b}|$ is equal to
 - (a) 2
- (b)4

(c)12

- (*d*) $\sqrt{74}$
- 73. If \overline{a} and \overline{b} are non collinear vectors, then $\frac{\overline{a}}{|\overline{a}|} + \frac{\overline{b}}{|\overline{b}|}$ is
 - (a) a unit vector

- (b) in the plane of \bar{a} and \bar{b}
- (c) perpendicular to \overline{a} and \overline{b}
- (d) parallel to \overline{a} and \overline{b}

74. Forces acting on a particle having magnitudes 3, 2, 1 units act in the directions of the vectors $2\hat{i} + 4\hat{j} + 4\hat{k}$, $4\hat{i} - 4\hat{j} + 2\hat{k}$ and $4\hat{i} - 4\hat{j} - 2\hat{k}$ respectively. The work done by the forces in displacing the particle from the point A(2, -1, 6) to the point B(5, -1, 3) is

(a) 2 units

(b) 4 units

(c) 6 units

(d) 3 units

75. $\lim_{n\to\infty} 4^{n-1} \sin\left(\frac{a}{4^n}\right)$ is equal to

(a) - a

(b) a/2

(c) a/4

(d) - a/4

76. If f(x) is a continuous function satisfying $f(x)f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$ and

f(1) > 0, then $\underset{x \to 1}{Lt} f(x)$ is equal to (a) 2 (b) 1

(c) 3

(d) 3/2

77. If $y = \log \sqrt{e \log x}$, $\frac{dy}{dx}$ at x = e is

 $(a) \frac{1}{\sqrt{e \log e}} \qquad (b) \frac{1}{2e \log e}$

 $(c) \frac{e \log e}{2}$

 $(d)\sqrt{e\log e}$

78. The derivative of $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$ with respect to $\tan^{-1}\left(\frac{3x-x^3}{1-3x^2}\right)$ is

(a) 1/3

(b)-1/3

(d) 2/3

79. If α , β are the roots of the equation $x^2 - 3x + 7 = 0$, then the equation whose roots are $\alpha^2 + 2$, $\beta^2 + 2$ is

(a) $y^2 + y + 43 = 0$ (b) $y^2 - y + 43 = 0$ (c) $y^2 + y - 43 = 0$ (d) $y^2 - y - 43 = 0$

80. If one of the roots of $ax^2 + bx + c = 0$ is the 4th power of the other, then the value of $(ac^4)^{1/5} + (a^4c)^{1/5}$ is

(a) 0

(b) 1

(c) -b

(d) b

81. If $\log 2$, $\log(2^x - 1)$, $\log(2^x + 3)$ are in arithmetic progression, then the value of 'x' is

 $(a) \log_5 2$

(b) 2

 $(c)\log_e 2$

 $(d) \log_2 5$

82. If a, b, c are in harmonic progression and if, $x = \frac{c}{a+b}$, $y = \frac{b}{a+c}$, $z = \frac{a}{c+b}$,

then $\frac{1}{r} + \frac{1}{r}$ is

 $(a)\frac{2}{y}$ $(b)\frac{1}{y}$

 $(c)\frac{3}{y}$

 $(d)-\frac{1}{v}$

83. If $\sum_{r=1}^{n} (3r+2)(r-5) = an^3 + bn^2 + cn$, then the values of a, b, c are

(a) 1, -5, -16 (b) -5, 1, -16 (c) -16, 1, 5 (d) -5, -16, 1

84. If $z = (\cos 2 + i \sin 2 + 1)^n$, then |z| is

(a) $2^n \cos 1$

(b) $2^n \cos n$

 $(c) 2^n \sin n$

(d) $2^n \cos^n 1$

85. The number of times the digit '5' will be written when listing the numbers from 1 to 1000 (assuming that a single digit number is written as 00x and a double digit number as 0xy) is

(a) 109

(b)300

(c) 271

(d) 250

86. If $\int \frac{dx}{\sqrt{x(1-4x)}} = K \sin^{-1}(8x-1) + C$, then K is equal to

(a) $1/\sqrt{2}$

 $(b)-1/\sqrt{2}$

(c)-1/2

(d) 1/2

87. Let $\frac{d}{dx}F(x) = \frac{e^{\sin x}}{x}$, x > 0. If $\int_{a}^{b} \frac{2e^{\sin x^2}}{x} dx = F(k) - F(l)$, then one of the possible set of values of k and l is respectively

 $(a) \frac{b-a}{2}, \frac{b+a}{2}$ $(b) \frac{b+a}{2}, \frac{b-a}{2}$ $(c) b^2, a^2$

(d) a^2, b^2

88. The solution of the differential equation
$$e^{\log \frac{dy}{dx}} = e^{2x} + y - 1$$
, $y(0) = 1$ is

(a)
$$y = e^{2x} + e^x + 1$$

$$(b) y = e^{2x} - e^x$$

(c)
$$y = e^{2x} - e^x + 1$$

$$(d) y = e^{2x} + e^{-2x} + 1$$

89. The arithmetic mean of n observations is 'm'. If two observations 0 and m are added, then the new mean is

$$(b)\frac{n}{m+1}$$

$$(c)\frac{mn}{n+2}$$

$$(d)\frac{m(n+1)}{n+2}$$

90. Two events A and B have probabilities 0.20 and 0.40 respectively. The probability that both A and B occur simultaneously is 0.15. Then the probability that neither A nor B occurs is

91. The equations ax + by + c = 0 and dx + ey - f = 0 represent the same straight line if and only if

$$(a) a = d, b = e$$

$$(b)\frac{a}{d} = -\frac{c}{f}$$

$$(c)\frac{a}{d} = \frac{b}{e}$$

$$(d) \frac{a}{d} = -\frac{c}{f} = \frac{b}{e}$$

92. The straight line y = mx + c cuts the circle $x^2 + y^2 = a^2$ in real points if

$$(a) \sqrt{a^2(1+m^2)} < c$$

$$(b) \sqrt{a^2(1-m^2)} < c$$

$$(c) \sqrt{a^2(1+m^2)} \geq c$$

$$(d) \sqrt{a^2(1-m^2)} \geq c$$

93. The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide.

Then the value of b^2 is

$$(d)$$
7

94. If ω is the cube root of unity, then the value of $(1-\omega)(1-\omega^2)+(2-\omega)(2-\omega^2)+\dots+(n-\omega)(n-\omega^2)$ is

$$(a)\frac{n}{3}(n^2+3n-5)$$

$$(b)\frac{n}{3}(n^2-3n+5)$$

$$(c)\frac{n}{3}(n^2+3n+5)$$

$$(d)\frac{n}{3}(n^2-3n-5)$$

95. In a triangle ABC, tan(A/2), tan(B/2), tan(C/2) are in H.P. and the sides 'a'

	and 'c' are given b	y 5 and 9 units, then the (b) 8	ne side 'b' is (c) 7	(d) 11						
96.	6. The bases of two towers subtend an angle of 120° at a point on the ground which is at 10m distance from each of the bases. A bird sitting at the top of the higher tower starts flying at a constant speed along a straight path inclined at an angle of 45° to the tower and reaches the other top in 5 sec. The speed of the flight (in m/s) is									
	(a) $\sqrt{6}$	(b) $2\sqrt{6}$	(c) $3\sqrt{6}$	$(d) 4\sqrt{6}$						
97.	The area bounded square units)	by the curve $y^2 = 4ax$	and the line $y = 2a$ ar	nd the y-axis is (in						
	(a) $\frac{1}{3}a^2$	$(b)\frac{2}{3}a^2$	$(c)\frac{4}{3}a^2$	$(d) \frac{3}{4}a^2$						
98.	A solution of the e	quation $y \frac{dx}{dy} = x(\log x)$	$-\log y + 1$) is							
		$(b) x^2 = cy \log y$		$(d) \log x = cy$						
99.	The solution of $\frac{dy}{dx}$	$\tan y = \sin(x+y) + \sin(x+y)$	(x-y) is							
	(a) $\sec y = C - 2e^{-x}$	cos x	$(b) y = C - 2\cos x$							
	(c) $\tan y = C - \sin x$	x	$(d)\cos y = C + 2\cos$	x						
100		factor of the linear diff	erential equation (sin ²	$(y + x \cot y) \frac{dy}{dx} = 1$						
	is $(a) \cos ec y$	(<i>b</i>)sin <i>y</i>	$(c) \tan y$	$(d)\cos y$						
101	. The variance of t	he first n natural numb	ers is							
	(a) $\frac{n(n+1)(2n+1)}{12}$	(b) $\frac{n^2-1}{12}$	$(c)\sqrt{\frac{n^2-1}{12}}$	$(d)\sqrt{\frac{n^2+1}{12}}$						
Rot	ugh work									

102.	02. For a distribution, the coefficient of variation is 22.5% and the value of the arithmetic average is 7.5. Then the value of the standard deviation is						
	(a) 2		(c) 2.5				
103.	The mean of 10 num the squares of these		standard deviation is 2	. Then the sum of			
	(a) 600		(c)100	(d) 400			
104.		bility that first two a	tudents are selected at re boys and the third is	s a girl is			
	$(a)\frac{2}{45}$	$(b)\frac{5}{91}$	$(c)\frac{15}{91}$	(d) $\frac{21}{91}$			
105.	A fair coin is tossed probability of the he		l appears on first three fourth toss is				
	$(a)\frac{1}{2}$	$(b)\frac{1}{8}$	$(c)\frac{7}{8}$	(d) $\frac{1}{16}$			
106.	If $P(X \le 4) = 0.8$ a						
	(a) 0.2	(b) 0.4	(c) 0.5	(d) 0.6			
107.	If in a Binomial d	listribution $n=4$,	$P(X=0) = \frac{81}{625}$, the	en $P(X=4)$ is			
	$(a)\frac{3}{5}$	$(b)\frac{2}{5}$	$(c)\frac{32}{625}$	(d) $\frac{16}{625}$			
108.	The points (3, 3), (-	-h, 0), (0, k) are col	llinear if				
	$(a) \frac{1}{h} + \frac{1}{k} = \frac{1}{2}$	$(b)\frac{1}{h} + \frac{1}{k} = \frac{1}{3}$	$(c)\frac{1}{h}-\frac{1}{k}=\frac{1}{3}$	$\left(d\right)\frac{1}{h} + \frac{1}{k} = \frac{-1}{3}$			
109.		endicular from the p $(b)(0,1)$	oint $(1, 2)$ upon $x + y$	= 1 is $(d) (1/2, 1/2)$			
	() ()	, , , ,					
110.	If a, b, c are in H.P.,	, then the line $\frac{x}{a} + \frac{y}{h}$	$-\frac{1}{c} = 0 \text{ always passes}$ $(c)(1, -2)$	through the point			
	(a)(-1,-2)	(b)(-1,2)	(c)(1,-2)	(d) (1,-1)			
D	-L		· ·				

111.	If the sum	of the	slopes	of the	lines	given	by	x^2 -	- 2 <i>kxy</i> -	+9y²	= 0	is	6	times
	their produc	ct, then	k has t	he valu	ıe									

(a) 2

(b)-2

(c)-3

(d)3

112. The equation of the circle, if its centre is (4, 5) and the circumference passes through the centre of the circle $x^2 + y^2 + 4x - 6y = 12$ is

 $(a) x^2 + y^2 - 8x - 10y + 1 = 0$

 $(b) x^2 + y^2 + 8x - 10y + 1 = 0$

(c) $x^2 + y^2 - 8x + 10y + 1 = 0$

 $(d)x^2 + y^2 - 8x - 10y - 1 = 0$

113. The extremities of the diameter of a circle have coordinates (-4, 3) and (6, -2). Then the length of the intercept which the circle makes on the y-axis is

(a) $\sqrt{124}$

(b)12

(c)11

 $(d)\sqrt{136}$

114. The eccentricity of the hyperbola $\frac{x^2}{5} - \frac{y^2}{5} = \frac{1}{\sqrt{1999}}$ is

(a) 2

 $(b)\sqrt{2}$

(c)4

 $(d) 2\sqrt{2}$

115. Let $\overline{a} = 2\hat{i} + \hat{k}$, $\overline{b} = \hat{i} + \hat{j} + \hat{k}$ and $\overline{c} = 4\hat{i} - 2\hat{j} + 7\hat{k}$, then the vector \overline{r} such that $\overline{r} \times \overline{b} = \overline{c} \times \overline{b}$ and $\overline{r} \cdot \overline{a} = 0$ is

(a) $\hat{i} + 7\hat{j} + 2\hat{k}$

 $(b) - \hat{i} - 7\hat{j} + 2\hat{k}$

(c) $7\hat{i} + \hat{j} + 2\hat{k}$

(d) $\hat{i} + \hat{j} + 7\hat{k}$

116. If $f(x) = |\cos x|$, then $f'(\frac{3\pi}{4})$ is equal to

 $(a) - 1/\sqrt{2}$

(b) $1/\sqrt{2}$

(c)1

(d) -1

117. Let $f(x) = \sin^4 x + \cos^4 x$, $0 < x < \frac{\pi}{2}$. Then the minimum value of f(x) is

- (b)-1/2
- (c)1/4

(d) does not exist

118. $\int \sqrt{x} \left(\sqrt[4]{1+x^{3/2}} \right) dx$ equals

(a) $\frac{4}{15}(1+x^{3/2})^{5/4}+C$

 $(b) \frac{8}{15} (1+x^{3/2})^{5/4} + C$

(c) $\frac{8}{15}(1+x^{3/2})^{5/2}+C$

 $(d) \frac{15}{4} (1+x^{3/2})^{5/4} + C$

119. $\int e^{\tan^{-1}x} \left(1 + \frac{x}{1 + x^2}\right) dx$ is equal to

- (a) $xe^{\tan^{-1}x} + C$ (b) $\frac{x}{2}e^{\tan^{-1}x} + C$ (c) $\frac{1}{2}e^{\tan^{-1}x} + C$ (d) $e^{\tan^{-1}x} + C$

120. The value of $\int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$ is

- (a) π
- $(b)\pi/2$
- $(c)\pi/4$
- (d) 2π

(Continued from the first page)

OMR ANSWER SHEET

- 11. Use the OMR answer sheet carefully; no spare sheet will be issued under any circumstance.
- 12. Do not fold or make any stray mark on the OMR sheet.
- 13. Use HB Pencil for shading the bubbles and black ball pen for writing.
- 14. In the OMR answer sheet, make the following entries
 - a. Write the Registration number, Question Booklet Number and Question Booklet Version code.
 - b. Fill the ovals corresponding to the Registration Number, Question Booklet Number and Question Booklet Version Code.
 - c. Write your Name and Sign in the column provided.
- 15. Rough work should not be done on the answer sheet.

ANSWERING AND EVALUATION

- 16. For each question, four answers are suggested of which only one is correct / most appropriate. Mark the correct / most appropriate answer by darkening the corresponding bubble using HB pencil.
- 17. In case the candidate wishes to change the choice already shaded, he/she may erase the marking completely and thereafter shade the alternative bubble.
- 18. If more than one bubble is darkened against a question, it will be treated as an incorrect answer.
- 19. For each correct answer, three marks will be awarded.
- 20. For each incorrect answer, one mark will be deducted from the total score.
- 21. If any smudge is left on the OMR sheet, evaluation will become imperfect.